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ABSTRACT

The transition from Physical Network Functions (PNF) to multi-cloud environments and service-
based architectures in 5G and Beyond (5G/B5G) networks has led in highly distributed, virtualized,
and interconnected edge services. While virtualization enables a flexible and scalable ecosystem,
bridging the physical and virtual domains, it also significantly increases the size and complexity of
these networks. This expansion inherently enlarges the attack surface, exposing networks to height-
ened risks of exploitation by malicious actors. Threats, such as intrusions, malware infections, and
the formation of large-scale botnets become more prevalent. Thus, it is imperative to improve the se-
curity of such networks beyond conventional methods, using a layered in-depth security acting not
only reactively but also proactively.

This PhD thesis addresses these emerging security challenges by introducing an additional security
layer based on the Moving Target Defense (MTD) strategy. MTD leverages the inherent flexibility
of modern networks to dynamically alter the attack surface of 5G/B3sG, thereby complicating attack-
ers’ efforts to conduct reconnaissance and execute targeted attacks. The thesis proposes a novel ap-
proach, termed MERLINS, which generates and manages optimal MTD strategies for both proactive
and reactive security. The MERLINS approach is built on a closed-loop, four-phase methodology, an
MTD framework, and a suite of solutions that implement the framework. The methodology defines
a cyclic process for selecting MTD operations based on near real-time monitoring and analysis of the
network state, ensuring timely and context-aware enforcement in §G networks and allowing future
compatibility with Bs G using the Network Virtualization Function (NFV) standard. The framework
outlines a high-level architecture, detailing the components required to support the methodology’s
tasks, while the set of new solutions are implementations of such components providing (a) inte-
gration with §G/BsG networks adhering to established specifications and standards, (b) the imple-

mentation of various MTD operations acting on different components of the network, (c) a cognitive
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component that optimizes MTD strategies by selecting the most effective operations based on the
network’s current state, and (d) a Federated Learning (FL) solution enabling multi-tenant collabora-
tion to optimize MTD strategies while preserving data confidentiality.

Practical experiments conducted on a deployed sG testbed demonstrate the feasibility, perfor-
mance, and limitations of the proposed solutions, as well as their effectiveness in mitigating a range
of security threats. The results observed in the experiments revealed that 1) IP and port shuffling
effectively increase the difficulty for attackers to identify and target services, 2) stateless service re-
instantiation and live migration is a powerful proactive security operation with limited overhead, mit-
igating Advanced Persistent Threats (APT) such as undetected malware infections and backdoors, 3)
the choice of communication protocol impacts MTD performance, with QUIC-based protocols re-
ducing downtime significantly compared to TCP in traffic redirection scenarios, 4) multi-objective
deep Reinforcement Learning (deep-RL), despite being less commonly used, outperforms tradi-
tional single-objective deep-RL in optimizations requiring a balance between conflicting objectives,
and 5) accelerates the optimization of MTD strategies and potentially enhances performances while
maintaining the confidentiality of participant data and models.

Collectively, this research advances the state of the art in securing 5G/B5G networks by providing
a comprehensive, adaptive, and proactive MTD-based security framework. The proposed solutions
not only address current security challenges but also pave the way to new research directions for re-

silient and secure future network architectures.
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KURZFASSUNG

Der Ubergang von physikalische Netzwerkfunktionen (PNF) zu Multi-Cloud-Umgebungen und di-
enstbasierten Architekturen in 5G und dariiber hinausgehenden (5G/BsG) Netzwerken hat zu hoch-
gradig verteilten, virtualisierten und miteinander verbundenen Edge-Services gefiihrt. Wahrend die
Virtualisierung ein flexibles und skalierbares Okosystem erméglicht, das die physischen und virtuellen
Dominen tiberbriickt, erhoht sie auch die Grofie und Komplexitit dieser Netzwerke erheblich. Diese
Erweiterung vergrofiern die Angriffsfliche und setzen die Netzwerke einem erh6hten Risiko der Aus-
nutzung durch boswillige Akteure aus. Bedrohungen wie Einbriiche, Malware-Infektionen und die
Bildung grof3 angelegter Botnets werden immer hiufiger. Daher ist es zwingend erforderlich, die
Sicherheit solcher Netze iiber die herkommlichen Methoden hinaus zu verbessern, indem eine mehr-

schichtige, tiefgreifende Sicherheit verwendet wird, die nicht nur reaktiv, sondern auch proaktiv wirkt.

Diese Doktorarbeit befasst sich mit neuen Sicherheitsherausforderungen, indem sie eine zusit-
zliche Sicherheitsebene einfiihrt, die auf der Strategie der Moving Target Defense (MTD) basiert.
MTD nutzt die inhirente Flexibilitit moderner Netzwerke, um die Angriffsfliche von sG/BsG dy-
namisch zu verindern und so die Bemiithungen von Angreifern zu erschweren, Erkundungen durch-
zufithren und gezielte Angriffe auszufithren. In dieser Arbeit wird ein neuartiger Ansatz, names MER-
LINS, vorgeschlagen, der optimale MTD-Strategien sowohl fiir proaktive als auch reaktive Sicher-
heit generiert und verwaltet. Der MERLINS-Ansatz basiert auf einer geschlossenen, vierphasigen
Methodik, einem MTD-Rahmenwerk und einer Reihe von Lésungen, die das Rahmenwerk imple-
mentieren. Die Methodik definiert einen zyklischen Prozess fiir die Auswahl von MTD-Operationen
auf der Grundlage einer nahezu in Echtzeit erfolgenden Uberwachung und Analyse des Netzwerk-
status, um eine zeitnahe und kontextbezogene Durchsetzung in 5G/BsG Netzwerken zu gewihrleis-
ten. Das Framework skizziert eine High-Level-Architektur und beschreibt die Komponenten, die zur
Unterstiitzung der Methodik benotigt werden. Die neuen Lésungen sind Implementierungen dieser

Komponenten und bieten: (a) Integration mit 5G- und dariiber Netzen unter Einhaltung etablierter



Spezifikationen und Standards, (b) die Implementierung verschiedener MTD-Operationen, die auf
verschiedene Komponenten des Netzwerks einwirken, (c) eine kognitive Komponente, die MTD-
Strategien optimiert, indem sie die effektivsten Operationen auf der Grundlage des aktuellen Zus-
tands des Netzwerks auswihlt, und (d) eine Losung fiir foderiertes Lernen (FL), die eine mandan-
teniibergreifende Zusammenarbeit erméglicht, um MTD- Strategien unter Wahrung der Vertraulich-
keit der Daten zu optimieren. Praktische Experimente, die auf einem 5G-Testbed durchgefiihrt wur-
den, demonstrieren die Machbarkeit, Leistung und Grenzen der vorgesch-lagenen Losungen sowie
ihre Effektivitit bei der Entschirfung einer Reihe von Sicherheitsbedrohungen. Die in den Exper-
imenten beobachteten Ergebnisse zeigen, dass 1) IP- und Port-Shuffling die Schwierigkeit fiir An-
greifer, Dienste zu identifizieren und anzugreifen, effektiv erh6ht, 2) zustandslose Neuinstantiierung
von Diensten und Live-Migration eine leistungsstarke proaktive Sicherheitsmafnahme mit begren-
ztem Overhead ist, die fortgeschrittene anhaltende Bedrohungen (APTs) wie unentdeckte Malware-
Infektionen und Backdoors abschwicht, 3 ) die Wahl des Kommunikationsprotokolls die MTD- Leis-
tung beeinflusst. Die Wahl des Kommunikationsprotokolls wirkt sich auf die MTD-Leistung aus,
wobei QUIC-basierte Protokolle die Ausfallzeiten im Vergleich zu TCP in Verkehrsumleitungsszenar-
ien erheblich reduzieren. 4) Multi-Objective Deep Reinforcement Learning (deep-RL) wird zwar
seltener eingesetzt, ist aber bei Optimierungen, die ein Gleichgewicht zwischen widerspriichlichen
Zielen erfordern, besser als herkdmmliches Deep-RL mit nur einem Ziel, und 5) beschleunigt die
Optimierung von MTD-Strategien und verbessert méglicherweise deren Leistung, wihrend die Ver-
traulichkeit der Teilnehmerdaten und -modelle gewahrt bleibt. In der Gesamtheit betrachtet bringt
diese Forschung den Stand der Technik bei der Sicherung von §G/BsG Netzwerken voran, indem sie
einen umfassenden, adaptiven und proaktiven MTD-basierten Sicherheitsrahmen bereitstellt. Die
vorgeschlagenen Losungen adressieren nicht nur aktuelle Sicherheitsherausforderungen, sondern
ebnen auch den Weg fiir neue Forschungsrichtungen in belastbaren und sicheren zukiinftigen Net-

zwerkarchitekturen.
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Introduction

ELECOMMUNICATION networks, such as §G/BsG, provide various services that enable con-
T nected and digital applications in anytime-anywhere settings. These services, ranging from
leisure human activities like live video streaming to mission-critical applications, such as smart grids
and industrial Internet of Things (IoT), operate in a scalable, cost-efficient, and flexible manner via
new technologies. Network slicing is a key technology in this regard, introduced with §G telecommu-
nication networks to create isolated, multi-tenant, and multi-domain networks on a single infrastruc-
ture, featuring an independent data plane, control plane, and management plane [1]. Each network
slice handles these three planes differently, considering their different service level requirements (e.g,

communication latency, bandwidth, and power consumption) [2].

Concurrently, Virtual Network Operators (VNO) are deploying Multi-Access Edge Computing
(MEC) [4], increasing the size and complexity of the infrastructure with intermediate data centers,
cloud platforms, and edge nodes at different access points. This architectural setting allows mobile
applications to utilize cloud computing platforms located in intermediate data centers and edge net-
works (such as those situated at cellular base stations) that are in close proximity to end-users. With

this edge-to-cloud continuum, communication overload is greatly reduced, and end-user Quality of
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Figure 1.1: Threat landscape evolution with the evolving of telecommunication networks, based
on [3].

Experience (QoE) is enhanced. However, the larger infrastructure that is eventually created also
presents new challenges as it increases the network complexity. Nonetheless, network slicing is still
possible with Software-Defined Networking (SDN) and Network Function Virtualization (NFV) in
this complexsetting [ 5 ]. These technologies improve the scalability and flexibility of network services
by dynamic instantiation, deletion, and chaining of virtual resources and Virtual Network Functions

(VNFs) encapsulated in virtual machines (VM) and/or container runtimes.

BsG systems will drastically extend network capabilities beyond this promise and realize a revo-
lutionary set of services with unprecedented quality and reliability levels, such as Further-enhanced
Mobile Broadband (FeMMB), Enhanced Ultra-Reliable Low-Latency Communication (ERLLC/
eURLLC), and ultra-massive Machine Type Communication (umMTC). They are envisioned to
support a peak data rate of 1 Tbps, an area traffic capacity of 1 Tbps/m?, and microsecond-level la-
tency. Expected to be deployed in the 2030s, they will unlock advanced traffic demands for more
flexible, data-hungry, and tactile applications such as holographic communications, pervasive Virtual
Reality (VR) and Augmented Reality (AR) applications, tactile Internet, smart massive autonomous

systems like drone delivery service, 3D networking, and fully-automated network orchestration [6].

However, this environment’s heterogeneity and increased large-scale nature also result in a greater
attack surface of communication systems, i.e., the set of network elements (hardware and software)

that can be accessed by authorized or unauthorized entities to exploit them for cyberattacks.



Figure 1.1 depicts the increasing number and diversity of threats with the successive telco gener-
ations, based on [3]. Protecting a larger attack surface is more challenging as attacks have a greater
range of targets and can propagate and affect multiple network domains and slices. Malicious actors,
internal or external to a telecommunication network, can perform various attacks, such as reconnais-
sance/fingerprinting, in order to gather knowledge on the targeted system, followed by more disrup-
tive attacks such as Denial-of-Service (DoS), Distributed DoS (DDoS), spoofing, intrusion, malware
infection, or Man-in-the-Middle (MitM). Moreover, some attacks can propagate within the network
through a single compromised device, leading to widespread security incidents, as observed with IoT
botnets [7]. This situation is expected to become more critical with Bs G networks, where Quality-of-
Service (QoS) requirements are even more stringent, and services are more critical towards security,

as in autonomous vehicle networks, Industry 4.0, and tactile remote surgery [8].

In-depth defense, composed of multiple layers of security, must be in place to secure such soft-
warized networks and services along the edge-to-cloud continuum. It becomes imperative to estab-
lish an automated system that monitors, detects, and adaptively mitigates threats by minimizing the
attack surface, performing optimal and dynamic decisions, and considering a multitude of factors in
the current state of the §G network. These requirements extend beyond sG networks and are also
applicable in the context of future networks currently being discussed in academia and the research

community, namely BsG, 6G, or NextG networks [3].

Moving Target Defense (MTD) [9] is a promising paradigm that extends network management
automation to security, providing proactive and reactive protection of virtualized network assets. The
US National Institute of Standards and Technology (NIST) defines MTD as “the concept of control-
ling change across multiple system dimensions in order to increase uncertainty and apparent com-
plexity for attackers, reduce their window of opportunity, and increase the costs of their probing and
attack efforts”. MTD leverages the new network’s flexibility and heterogeneity properties to its advan-
tage by shifting the virtual resources in time and space. This can drastically reduce the action space of

attackers in the time dimension, mitigate attacks, and guarantee the availability of protected services.

The usage of MTD would result in an additional defensive layer for in-depth security of future
networks, complementing conventional security approaches, such as firewalls, authentication, secu-
rity protocols, and encryption, further increasing the hardening of a networked system. Thus, MTD
does not replace foundational security measures; rather, it addresses the exponential increase in the
attack surface by introducing uncertainty and resilience. By continuously shifting the system’s config-
uration, MTD operations invalidate an attacker’s reconnaissance and data collection efforts, forcing
them to continually reassess their approach. This raises the cost for attackers and reduces their Attack
Success Probability (ASP).



Nonetheless, the enforcement of MTD operations can also impact the network performance and
come with additional operational costs and energy consumption. Therefore, smart and dynamic con-
trol of MTD following a cognitive paradigm (i.e., a closed loop of observe, orient, plan, decide, act, and
learn tasks) considering security requirements, security gains, overhead, and feasibility, is crucial.
This is attainable through the utilization of game-theoretical models, Artificial Intelligence (AI), and
Machine Learning (ML) to enable and optimize the autonomous protection of virtualized network

resources and services.

1.1 PROBLEM STATEMENT

Despite the promise of MTD and AI/ML paradigms for network security, the goal of learning-based
optimization of autonomous and proactive security, considering the heterogeneity of services, in-
frastructure, and operational requirements in Telco Cloud environments, is still to be reached. Telco
Clouds are telecommunication networks provided by a VNO and complying with the NFV and MEC
architectures [10].

As of today, the deficit towards reaching this goal and the key challenging issue to be addressed by
this Thesis is the following:

« To date and to the best of the author’s knowledge, there is no research work for designing
and operating ML-based optimized MTD for large-scale and realistic telecommunication net-
work scenarios, with a forward-looking perspective of driving technologies for BsG networks,
such as cloudification and Al-native technologies. While AI/ML-driven MTD promises self-
regulated autonomous operations and mitigation of cyber threats, its fundamental advantages
in attack prevention, mitigation, and responsiveness have not been identified in various secu-

rity scenarios.
This comes with subsequent relevant challenges summarized below:

« The integration and utilization of full-stack, full-spatiotemporal action space (e.g., VMs and
containers live migration, execution environment diversification, and shuffling) in virtualized
5G infrastructure for MTD is still scarcely explored. Moreover, the cohabitation of proactive
modes (i.e., to change the attack surface before the attack) and reactive modes (i.e., to change
the attack surface/mitigate during the attack) supported by online network monitoring for

situational awareness is still to be developed.

« Most of the work is evaluated only on theoretical game-theory models, and a few also apply

it in PoCs, but with relatively simplistic scenarios and limited environments, i.e., based on a



static instantiation of a system model, which is used to develop cognitive security schemes
and optimization mechanisms. However, more realistic 5G networks are highly dynamic and
heterogeneous, resulting in fast variations of the virtual service and network topology over

time.

« The strategic placement and movement of network resources aim to improve security, opti-
mize performance, and ensure efficient resource consumption. These objectives do not over-
lap, and conflicts may arise when performing MTD operations, favoring one goal at the ex-
pense of the other. For instance, moving a VNF from a remote Virtual Infrastructure Manager
(VIM) to an edge node’s VIM for communication optimization may be a poor security choice,
asan attacker can easily predict such an action. A purely random placement, on the other hand,
improves security by reducing its predictability, but can hinder the network’s performance and

the QoS of the moved service.

« Within a multi-tenant, multi-cloud communication environment, Telco Cloud services may
be provisioned across infrastructure belonging to multiple operators and VNOs. In such sce-
narios, autonomous decision-making systems managing resources for one tenant could di-
rectlyinfluence the resources allocated to other tenants, necessitating either a hierarchical, cen-
tralized architecture or a peer-to-peer tenant structure with cooperating autonomous decision-
making systems. While leveraging the diverse network experiences and threat intelligence
from various tenants offers potential forimproved MTD optimization, both approaches present
challenges, such as ensuring data confidentiality, establishing trust, ensuring fairness in re-

source allocation, and securing data aggregation.

1.2 RESEARCH QUESTIONS

This PhD thesis addresses the challenges outlined in Section 1.1 and proposes a novel approach that
enables autonomous, proactive, and reactive cognitive cybersecurity schemes, leveraging MTD for
optimized and robust network slice protection in 5G (and prospective BsG) environments. Within

this context, four research questions were investigated during the development of this PhD thesis:
RQ1 - MTD Action Selection and Security Impact: Which MTD actions can be taken on a 5G
network and against which attack scenarios, considering the security properties they offer?

This RQ1 involves the literature review, evaluation, and comparison of the MTD operations

that can be performed on the different layers of a Telco Cloud network, their operational cost,



and the substantial improvements for s G/BsG security management in identified security sce-

narios.

RQ2 - MTD Efficiency Optimization: How can we minimize the network and resource overhead

associated with MTD operations, inducing increased energy consumption, without affecting

its security properties?

This RQ2 involves the literature review of emerging AI/ML methods and the adoption/de-
sign of an appropriate ML-driven control system that learns and applies proactive and reactive
MTD strategies in the right place and at the right moment, improving efficiency (in terms of
resource consumption, making MTD also more sustainable), and effectiveness (in terms of

security gains).

RQ3 - Formal Modeling for Network Assessment: Which modeling approaches are most suit-

able for representing communication networks to enable near real-time monitoring and secu-

rity assessments for MTD systems?

This RQ3 focuses on designing appropriate architecture(s)/models that enable ML-driven
MTD as needed in RQ2. This involves developing mathematical models that accurately de-
scribe the considered game theory problem for the MTD control system and for virtualized

service/resource protection, possibly identifying practical constraints and system requirements.

RQ4 - Multi-tenant distributed MTD solution: What are the ways to distribute the control sys-

1.3

tem of the cognitive MTD solution in a multi-tenant peer-to-peer environment?

This RQ4 focuses on investigating theoretically and experimentally the cognitive and autono-
mous MTD approach in a distributed peer-to-peer manner among multiple decision systems
held by different tenants of a Telco Cloud. This includes using or extending RQ2 results for
such problems and investigating theoretically and experimentally distributed ML approaches
such as Federated Learning (FL).

THESIS CONTRIBUTIONS

To address these challenges, this Ph.D. thesis designs, implements, and studies the usage of a smart

cybersecurity framework focusing on MTD to secure §G/BsG Telco Clouds. Inherent to 5G, secu-

rity evolves towards the use of virtualization, and MTD becomes a promising protection scheme that

leverages the cloud-native nature of novel telecommunication networks. The Ph.D. thesis proposes a

state-of-the-art solution in the area of smart/cognitive cybersecurity systems. It performs threat and



security analysis of the relevant 5 G subsystems and produces a resource-optimal MTD-based defense
technique. AI/ML is used to learn new MTD strategies that optimize the cost/benefit tradeoff of its

operations. The contributions of this PhD thesis are summarized as follows:

Methodology Framework Solutions
( Integration to the ) ([ High Level
___ 5Gnetwork | | Architecture [ MTD controller ]
Network state ) Layers and ) Network traffic
assessment and mapping to migration handler
L decision making ) —> methodology ) b—> .
(MTD management ([ Functional .
hestrati t .
|_and orchestration | components [ Federated mult
f ) Interfaces and tenant MTD
\ MTD enforcement interactions orchestrator
| —
high level design specific implementations

Figure 1.2: Overview of Contributions of This PhD thesis.

« Anovelmethodology and framework: MERLINS. The main contribution of this PhD thesis
is the methodology designed, resulting in the creation of a novel architectural framework for a
cognitive MTD orchestrator that integrates with the management and orchestration (MANO)
component of the NFV architecture in §G/BsG networks. MERLINS is designed by adher-
ing to the ETSI ZSM reference architecture, defining a closed-loop control that achieves a
self-configuring, self-monitoring, self-healing, and self-optimizing sG/BsG system. Differ-
ent solutions are then designed and implemented to cover the tasks defined in the framework,

further providing the following contributions.

« An MTD controller integrated in a 5G network: MOTDEC. This is responsible for enforc-
ing the MTD actions on the 5G network in coordination with the §G MANO and network

slice manager.

« Alive network traffic migration handler: TopoFuzzer. This solution is designed to handle
the redirection of session-based communications, preventing disruptions to ongoing sessions

during MTD actions such as IP shuffling and VNF migrations.



« A containerized CNF’s live migration for MTD: ContMTD. This is a lightweight proactive
MTPD solution that leverages SoTa container live migration to dynamically relocate stateful
CNFs (i, 5G network functions) in cloud-native environments. By periodically migrating
containers across hosts, ContMTD disrupts attacker reconnaissance and reduces vulnerability

windows without service downtime.

« A deep-RL optimizer of MTD strategies: OptSFC. This is the cognitive component de-
signed to optimize the MTD strategy in a multi-objective setup that considers different op-

timization factors in the problem.

« Afederated multi-tenant MTD orchestrator: MTDFed. This enables a multi-tenant orches-
tration of MTD actions, where multiple operators run their own decision systems while also

cooperating to optimize MTD strategies.

Ultimately, these contributions bring MTD proactive and reactive protection into §G/BsG net-
works, providing a novel security-aware, cost-aware, and QoS-aware intelligent management and or-

chestration of Telco Cloud assets.

1.4 THESIS OUTLINE

This PhD thesis is organized into six chapters, depicted in Figure 1.3. Chapter 2 establishes the the-
oretical foundations and key concepts of Telco Cloud networks and MTD required for a complete
understanding of this thesis. This includes the analysis of current telecommunication networks, i.e.,
5 G, the architectural standards and technologies behind them, i.e., ETSI NFV and ETSI ZSM, the
MTD concept, service live migrations, and the decision optimization using ML, specifically, deep
Reinforcement Learning (deep-RL) and Federated Learning (FL).

Next, Chapter 3 delves into the existing literature regarding MTD. For this, a comprehensive re-
view from a telecommunication networks perspective is conducted to map theoretical models, tech-
nologies, and systems that address the challenges of delivering cognitive and optimized MTD policies
to reduce operational costs, network overhead, and impact on a VNF’s QoS, while maximizing secu-
rity gains.

Then, Chapter 4 introduces the core contribution of the thesis: the MERLINS approach. It elab-
orates on each element of MERLINS, proposing a closed-loop methodology for continuous network
monitoring and ML-based MTD policy enforcement. The chapter further details the architectural

framework that operationalizes the defined methodology and proposes a set of solutions to fulfill the
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Figure 1.3: Organization of This PhD Thesis.

framework’s requirements. Chapter 4 also details the implementation specifics of the proposed solu-
tions within MERLINS. This includes discussions on technology choices, implementation steps, and
the technical decisions made during the development process.

After that, Chapter 5 presents extensive evaluations of the proposed solutions, incorporating both
quantitative and qualitative metrics. A dedicated case study using a 5G testbed further demonstrates
the feasibility and benefits of the MERLINS methodology, framework, and solutions. This chapter
concludes with a discussion of all findings, along with any challenges and limitations encountered
during the development and evaluation process.

Chapter 6 concludes this PhD thesis by summarizing the key findings and revisiting the research
questions outlined in Section 1.2. Finally, it also identifies and discusses some suggestions for future

research directions in this area.
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Theoretical Foundations

HIS chapter establishes the theoretical foundations, core principles, and contextual knowledge
T necessary to frame and substantiate the research contributions of this PhD thesis. Section 2.1
introduces the terminologies and concepts related to modern telecommunication networks, includ-
ing the technologies and architectures used in the current generation (5G) and beyond (BsG), such
as Telco-Cloud architectures, Multi-access Edge Computing (MEC), and Fog Computing. These
technologies are critical in enabling the MTD operations implemented in this thesis. Following this,
Section 2.2 provides a detailed examination of the fundamentals of MTD, its categories, and opti-
mization challenges. Section 2.3 then explores the background of live service migration, employed
in MERLINS as an MTD operation. Finally, Section 2.4 presents the basics of deep Reinforcement
Learning (deep-RL), which is relevant to address the MTD optimization challenges tackled in this

thesis.

It is appropriate to highlight that the glossary appendix (cf. A.2.2) contains the terminology used
in this chapter and throughout the thesis.
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2.1 §G/BsG TELECOMMUNICATION NETWORKS

To assess the environment in which this thesis develops its security orchestration framework, i.e. 5G
and BsG networks, it is essential to first grasp the structure and components of these environments.
This understanding lays the groundwork for identifying the network’s attack surface, the associated
threat and risk scenarios, and the inherent properties and characteristics that can be leveraged to mit-
igate these threats. For such reason, this section describes the infrastructure of sG networks (Sec-
tion 2.1.1), the relevant modern architectures such as MEC and Fog computing based on the ‘cloud-
ification’ of telecom networks resulting in the new concept of Telco-Cloud (Section 2.1.4), the stan-
dardization perspective in the ETSI standard, including the major NFV standards (Section 2.1.2),
and finally the management and orchestration of the virtualized resources following the ZSM frame-

work (Section 2.1.3).

2.1.1  5G INFRASTRUCTURE

The Fifth Generation of Mobile Telephony, or 5G, is the current state-of-the-art telecommunication
system defined by 3GPP from Release 15, in 2018, with ongoing updates up to Release 18 [11]. 3GPP
establishes not just the communication method between phones and towers (air interface), but also
the protocols that govern how mobile networks function: from managing calls and user connections
to delivering services and ensuring seamless switching between networks (i.e., interoperability). This
standardized approach allows mobile networks built by different vendors and service providers/op-
erators to work together flawlessly. Nearly all operators ofter 3 GPP systems today, with Long-Term
Evolution (LTE, or 4G) deployed by over 800 operators, and s G already available from 153 operators
in 71 countries, as per GSAcom in March 2024 [12].

Unlike previous generations designed primarily for consumers, 5G extends its reach to various in-
dustries and applications demanding real-time responsiveness, such as autonomous driving in the
Internet of Vehicles (IoV) [13] and the Tactile Internet (TI) [14]. To deliver these advanced func-
tionalities and enhance user experience, 5G utilizes a toolbox of innovative technologies such as NFV,
SDN, MEC, and Satellite Communications. Starting from §G and going to B5G, telecommunication

networks improve the following services:

« Enhanced Mobile Broadband (eMMB): this service aims to provide higher throughput (20Gbps
peak data rate) and improved coverage with millimeter-wave (mmWave) frequencies and ad-

vanced Multiple Input Multiple Output (MIMO) technology according to 3 GPP.

12



« Ultra-Reliable Low-Latency Communication (RLLC/URLLC): this service focuses on provid-
ing higher reliability (expected at 99,9999% ) and lower latency (1 to 20 ms).

« Massive Machine Type Communication (mMTC): this service supports a high density of con-

nected devices in massive IoT ecosystems, ensuring efficient and reliable connectivity.

o Flexible Network Operations: this provides a set of services offered starting from 5G and con-
tinuing with BsG networks, enabling flexible management and orchestration of networking

resources. This includes network slicing, NFV, and MEC, further developed in this section.

These services characterize §G networks as specified by the International Telecommunication Union
(ITU) in the International Mobile Telecommunications (IMT) standards, which define 3G in IMT-
2000, 4G in IMT-Advanced, 5G in IMT-2020, and is now defining future 6G networks in the IMT-
2030 standard, adding to the three 5G services (i.e., eMMB, URLLC, and mMTC) three novel usage
scenarios: Integrated Sensing and Communication, Al and Communication, and Ubiquitous Con-
nectivity [15].

The 5G system incorporates similar elements to previous generations, consisting of User Equip-
ment (UE), which includes a Mobile Station and a USIM, a Radio Access Network (RAN), and a
Core Network, in this case, a 5G core (sGC). The RAN’s central component is the gNB (gNodeB),
which is the base station and serves as the radio transmitter. The radio interface is termed “NR-Uu’,
from New Radio (NR). 5G NR leverages mmWave and MIMO technologies to offer eMMB and op-
erates over multiple frequency ranges, from 400 MHz to 100 GHz, with licensed bands between 600
MHz and 39 GHz, enabled in specific countries and regions. The frequencies enable analog bands for
satellite systems, but the terrestrial frequency ranges are identified as 1. up to 1GHz for rural areas, 2.
1 to 6 GHz for urban and suburban areas, and 3. above 6 GHz for dense urban environments.

The sGC is schematically represented in Figure 2.1, where the User Plane Function (UPF) man-
ages user data and the Access and Mobility management Function (AMF) handles the UE and the
RAN. Additional s GC entities are also included. The interface between the access and core networks
is referred to as “NG”, composed of several interfaces, primarily N2 and N3.

The sGC architecture utilizes a Service-Based Architecture (SBA) framework, defining architec-
ture elements as “Network Functions” (NFs) rather than traditional Network Entities. Each NF
provides services to other authorized NFs and consumers through a common interface framework,
promoting modularity and reusability. NFs are split between the essential NFs of the signalling/-
control plane and the NFs of the user plane. The signalling plane only comprises elements related to

managing the 5G connectivity, as the AMF, while the user plane comprises elements involved in the
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Figure 2.1: 5G core architecture with N/ interfaces to the UE, RAN, and DN components.

User Plane

N6 JLANN
&/

DN

transport of user data. The UPF is an essential NF that manages all NFs in the user plane. The 5G
comprises various essential NFs, among which are: The Application Function (AF), which controls
the applications (and may also be involved in the user plane); The Service Communication Proxy
(SCP), which dynamically scales and manages communication services in the network; The Session
Management Function (SMF), which manages calls and sessions and coordinates with the UPF; The
Unified Data Management (UDM), functionally analogous to 3G and 4G’s Home Subscriber Server
(HSS) and 2G’s Home Location Register (HLR); The Policy Control Function (PCF), which en-
sures that user data traffic does not exceed the negotiated bearer capacities; The Network Repository
Function (NRF), which manages other NFs by providing support for registering, deregistering, and
updating NF services; Security-related NFs: Network Exposure Function (NEF), Authentication
Server Function (AUSF), Security Anchor Functionality (SEAF); and The Network Slice Selection
Function (NSSF).

5G deployment offers two primary architectural options. The Non-Stand Alone (NSA) architec-
ture integrates the §G RAN and NR interface with the existing 4G LTE and EPC Core Network,
allowing for the use of NR technology without replacing the existing network infrastructure. This
configuration supports only 4G services but benefits from the advanced capabilities of §G NR, such
as lower latency. With the 4G E-UTRA and sG NR dual Connectivity (EN-DC), the NSA setup
connects the sG NR base station (en-gNB) to the 4G LTE base station (eNB) via the X2 interface,
which was enhanced in Release 15 to facilitate this connection.

The Stand-Alone (SA) architecture, on the other hand, connects the NR directly to the 5G Core
Network (CN), enabling support for the full suite of 5G services. This configuration represents a
complete sG deployment, independent of 4G infrastructure. The NSA architecture has been viewed

14
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Figure 2.2: Non-StandAlone (NSA) and StandAlone(SA) architectures for 5G networks, based
on [16].

as a transitional step towards the full implementation of 5G, leveraging existing 4G infrastructure to
provide enhanced services while paving the way for the more advanced capabilities of the SA archi-
tecture. Most of 5G networks today are NSA, such as the Swiss telecommunication infrastructure

operated by Swisscom, as of April 2024 [17].

2.1.2 NETWORK FUNCTION VIRTUALIZATION

The ETSI Network Function Virtualization (NFV) architecture [10] is a standard specified by the
European Telecommunications Standards Institute (ETSI). It introduces to legacy telecommunica-
tion networks the flexibility of could-native infrastructures, as well as the virtualization of network
resources. Here, network transportation is software-defined, and traditional NFs are usually expen-
sive hardware middleboxes, plugged and configured manually (e.g, Broadband Remote Access Server
(BRAS), Radio Network Controller (RNC), Carrier Grade NAT (CG-NAT), firewalls, and load bal-
ancers) become virtualized. They can be deployed in one or many virtual machines or, as in recent
efforts, in more lightweight and flexible OS containers, naming them respectively virtual network
functions (VNF) and cloud-native network functions (CNF). This significantly reduces the VNO'’s
Capital and Operational Expenses (CAPEX/OPEX).
As depicted in Figure 2.3, the main components of the ETSI NFV architecture are:

« The NFV Infrastructure (NFVI): this groups all the computational resources, storage resources
and network resources, at both the hardware and virtual level. This represents the cloud infras-

tructure of the architecture.
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Figure 2.3: ETSI NFV architecture [10].

« The NFVresources: these are the singular network functions and services running in the Telco
Cloud network. These resources could be VNFs or CNFs, depending on whether they are
hosted in VMs or containers. A group of VNFs, interconnected with virtual links (VL), form
what is defined as a network service (NS), where the set of VNFs/CNFs enable the provision
of specific services, analogous to the microservices concept in cloud computing. Then NSs
can be part of a virtual network/domain, namely a network slice (NSi). All these represent
NFV network resources and are defined by a standardized file descriptor (i.e., vnfd for VNFs
and CNFs, nsd for NSs, and gst for NSis).

« The Virtual Infrastructure Manager (VIM): it is responsible for the management of the NFV
network resources. In practice, this corresponds to the cloud management platforms used

today, such as Openstack, VMWare, Microsoft Azure, and Amazon Web Services (AWS).

« The NFV Management and Orchestration (NFV MANO) is the high-level component man-
aging the catalogue and the life-cycle of the NFV network resources. The NFV MANO com-
prises the NFV Orchestrator (NFVO), the VIM, and the VNF manager (VNFM). The ETSI
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develops and maintains Open Source MANO (OSM)[ 18], an open-source implementation of
the NFV-MANO standard.

Network slices (NSi) provide VNOs’ clients a flexible and scalable ICT solution that follows their
needs in space (geographic expansion) and time (growth in resource demand). This SotA cloud-
native approach also allows the VNOs to meet the requirements of novel sG and Beyond core net-
works: responsiveness, dynamicity, and scalability for MEC applications [19].

Research shows significant improvements in performance and efficiency optimization of network
services through the NFVMANO leveraging ML and Al techniques to manage and strategically place
virtual resources [20]. However, the NFV MANO’s autonomous management also must consider
the security in its strategic resource orchestration, including the prevention and mitigation of attacks
targeting the NFV resources. To this end, MTD is a promising method that extends automated net-

work management to security.
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Figure 2.4: ETSI exemplary Closed Loop Coordination timeline [21].

2.1.3 ZERO ToUCH NETWORK & SERVICE MANAGEMENT

ETSI Zero Touch Network & Service Management (ZSM) is an industry specification group (ISG)
involved in the standardization of end-to-end network automation for service provisioning and life-
cycle management in highly heterogeneous networking environments, such as §G and BsG systems,
employing various technologies to enable its vision, e.g., Al, networkslicing, and NFV. The ETSIZSM
standard defines the ZSM Framework that allows the self-optimization improvement of the network,
according to specified service level agreements (SLAs). The cellular network is separated into dis-

crete management domains, namely the Radio Access Edge, the Transport, and the Core domains.
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Each domain has its closed-loop operation process, subject to an overarching End-to-End (E2E) Ser-
vice Management Domain with a global perspective of the underlying domains and is responsible for
the overall service provisioning to the customer. This ensures the smooth operation of the entire
E2E system, given the growing trend of resource-sharing between operators (multi-tenancy) and the
decentralization of network functions. Hierarchical approaches are predominant in solving the multi-
domain management problem in ZSM, originating from the limited visibility of local domain agents
in these approaches, given also the privacy and adversarial management implications in a multi-tenant
network.

Various models describe closed-loop mechanisms, e.g., the Orient-Observe-Decide-Act (OODA)
and Monitor-Analyze-Plan-Execute-Know (MAPE-K) models [22]. Despite differences in step def-
initions, these models follow a similar high-level workflow: Monitoring, Analysing, Deciding, and
Acting, as illustrated in Figure 2.4.

In this thesis, we concretely realize a cognitive closed-loop security management system for MTD
operations on NFV resources (e.g. VNFs, CNFs, NSs, and NSis). The applied security management
system has two possible entry points. The first entry point, the proactive one, deploys MTD opera-
tions ensuring compliance with the SLA and security requirements set forth, while the other entry
point, the reactive one, enforces MTD operations as countermeasures when a change in the security

context (e.g. ,an attack) occurs.

2.1.4 MEC & FOG COMPUTING

Multi-access Edge Computing (MEC) [19] is an ecosystem connecting telecommunications and IT
services, enabling mobile applications to use computational resources at the edge of the RAN, at its
cellular base station, bringing cloud computing capabilities closer to the end users’ devices, i.e., the
UE. This approach offers significant enhancements to various §G services. For FeMBB, MEC alle-
viates core network congestion by enabling localized content caching and processing, resulting in
improved bandwidth utilization and reduced latency. Furthermore, MEC’s distributed nature posi-
tions it ideally to support applications requiring enhanced ultra-reliable low-latency communication
(eURLLC), such as remote surgery and TL. MEC’s efficient resource management capabilities, lever-
aging NFV and SDN technologies, also prove advantageous for umMTC, enabling it to handle the
vast number of connections and data volume generated by recent massive Internet-of-Things (mIoT)
and IoV networks.

MEC applies as a standard architecture for telecommunication networks starting from the advent
of 5G and spanning to future BsG networks. Standardization efforts are followed by the ETSI, in
line with the NFV and ZSM standards, as standardized in ETSI GS MEC 003 [23 ], making it a valid
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technology to use for the design and implementation of a cognitive defensive solution for the Telco
Cloud security leveraging MTD. MEC itself raises, among other concerns, the issue that cellular base
stations are typically installed in public places. Thus, they have fewer physical surveillance measures
than traditional core networks, although the criticality of the edge node increases in the MEC dispo-
sition. Moreover, the cloud platform at the edge has reduced capabilities compared to conventional
data centers; thus, lightweight and computational efficiency are desired security application require-

ments to maximize the functional usage of edge nodes.

Fog computing, Similar to the concept of MEC and edge computing, fundamentally extends MEC
by adding an intermediate layer in the network infrastructure spanning from the edge nodes to the
centralized cloud data centers [24]. This layer, also referred to as the “fog layer”, incorporates inter-
mediate network nodes like routers and switches to provide computing resources, further pushing
the distribution of computational tasks across the network. Centered around small distributed data
centers known as cloudlets, fog computing is designed to minimize application delays and process-
ing times. Cloudlets, possessing lower computing capacity and proximity to users, can leverage larger
cloud data centers when needed. In scenarios of user mobility, such as in mobile networks, this can

further develop into trying to make the service follow the users.

This development has fostered the concept of Edge-to-Cloud Continuum, which emphasizes the
functional andlogical relation of diverse network functions distributed across the infrastructure, from
the edge to the cloud, and delivering a unified service, e.g. in IoV networks [25] that cater to the
real-time communication needs of autonomous vehicles, and the tactile Internet [26] that supports

near-instantaneous interactions for applications like remote surgery.

2.2  MOVING TARGET DEFENSE

MTD proactively changes the properties and configurations of an Information and Communication
Technologies (ICT) environment. The MTD concept is not only applicable to network security: an
example is the Address Space Layout Randomization (ASLR), used in the software security domain

to protect code segments against buffer overflow (BoF) and other memory corruption attacks [28].

As depicted in Figure 2.5, MTD operations can be classified into three categories [29]: shufle,
diversity, and redundancy. Shuffle MTD actions (such as ASLR) change the layout/topology of a
system/network (respectively) and can be applied on IP addresses, port numbers, packet headers,

proxies, traffic routes, as well as VMs and container locations. Shuffling aims to reduce the asymmet-
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Figure 2.5: MTD operation types in a network [27].

ric advantage of attackers when using reconnaissance attacks to scan the network with tools such as
pof, Nmap, and Nessus.

Diversity MTD actions change the execution environment of a running system. They modify the
technology stack of the environment like operating systems (OSs), protocols, vendors, or cloud en-
vironments underlying virtual components. Diversity MTD actions prevent the exploitation of the
environment’s vulnerabilities and make an effective defensive measure under the assumption that the
substitute technologies possess different exposures, i.e., that the intersection of common vulnerabil-
ities of the substitute technologies is smaller than the vulnerability space of a technology selected
singularly. Practical examples of such operations are: changing an OpenVSwitch with a Cisco vir-
tual switch, changing a Linux server with an equivalent Windows server, deploying the same service
but implemented in a different programming language, or migrating a VM from an OpenStack to a
Microsoft Azure cloud.

Redundancy MTD actions create hardware and software copies, such as backups and load balancers
for fault-tolerance and availability improvements. Different techniques in this MTD category have al-
ready been extensively investigated in technical fields like fault-tolerant computing and cyber-resilien-

ce, and thus are not directly considered in this thesis.
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2.2.1 CATEGORIES OF MTD

Figure 2.6 is a visualization of MTD strategies and how they can be realized in a virtualized and
software-defined network. Marker (1) shows the MTD shuffle and diversity schemes that can be per-
formed in a cloud environment to move virtual resources like VNFs and network slice components
from an NFVI to another (e.g, from VMware to OpenStack, or Azure), or distribute the resources of
anetwork slice over to different cloud NFVIs, rather than grouping them in a single cloud infrastruc-
ture. Marker (2) describes the mutation of the infrastructure layer linking different network elements,
allowing to change the topology of the network and the packets’ path (e.g,, with data flow tables of
SDN controllers). Diversity can be added by using different switch vendors (e.g., shuffling Open-
VSwitch, Cisco, and Windows switches) or moving components from a local cloud at the edge of the

network to a remote cloud via the Internet.
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Figure 2.6: Combination of MTD operations at different levels of an NFV-SDN network [30].

In the context of 5G/B5G networks, MTD operations can be performed at three levels of an SDN-
NFYV infrastructure. Specifically, at the:

1. networking level: this concerns network traffic and protocols, and includes attacks such as

reconnaissance, Man-in-the-Middle (MitM), or Denial-of-Service (DoS);

2. virtualization level: this concerns the hypervisor’s vulnerabilities and the isolation of VM-

based or container-based network functions;
3. application level: this concerns software vulnerabilities and exploits.

For NFV infrastructure management and orchestration, MTD operations are mainly executed at

the first two levels of the infrastructure: the networking and virtualization levels. The security of the
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application level is under the responsibility of VNF developers. Therefore, application vulnerabilities
are checked and patched by developers and out of the scope of VNO’s network management systems.
At the networking level, MTD can change traffic routes using SDN control, change virtual switches
for diversity shufles (e.g., change a Cisco virtual switch with an Open vSwitch), and modify the net-
work topology using NFV and proxy nodes. At the virtualization level, MTD can migrate virtual
resources to different cloud platforms (e.g, move a VNF from an Openstack Virtual Infrastructure
Manager (VIM) to a VMWare or an Azure one), changing the virtualization stack on which network

functions are running.

2.2.2 MTD OPTIMIZATION CHALLENGES

There are various pertinent challenges that must be addressed to facilitate and enhance the cognitive
MTD security approach within envisioned 5sG/BsG networks. This is due to the combination of
multiple factors involved in changing configurations and positions of services while keeping the net-
work manageable and coherent, especially in a complex multi-domain and multi-tenant environment
such as B5G. A concise depiction of these factors and challenges is provided in Figure 2.7, followed

by more detailed discussions in the next subsections.
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Figure 2.7: Research challenges and directions for MTD in B5G/6G [27].

( ) heterogeneous real time -
/ Dynamic ultra hardware monitoring @REIERGIET LN
e scale 6G - 3
) i realistic network-state ’ privacy
virtualized ~ systems modelling , ~  objective
network complext \ ¢  Quantification intelligence
plexity S N V2 sharing federated
energy overhead 4 ML
9y h centralized
. Cognitive MTD in 6G Sl Multi-tenant
(CICLURTTI = = = = = = = = = ¢ o iy networks
net zero MTD r4 1 REMMOIRS multiple
operations decision- making % ..._'ﬂ_
1 syst -
ystems N 4
resource . ! ijacki ; il.
) explainability model hijacking conflict L
consumption | : @ <«
side-channel | MORL managemen
1

Dynamic ULTRA-LARGE-SCALE NETWORKS

An inherent problem is the complexity since BsG networks are ultra-large-scale systems incorpo-

rating various systems, technologies, and devices, from IoE to space networks [3]. VNOs will also
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be faced to a spectrum of service requirements and hardware/software performance capabilities. For
instance, Bs G-enabled remote surgery demands ultra-low latency ( < 1 ms) and high edge computa-
tional power (from 100 Giga Operations Per Second (GOPS) to 1 TOPS) for real-time robot control,
image processing, and haptic feedback utilizing Extended Reality (XR) interfaces. This translates to
aneed for high bandwidth (from 100 Mbps to 1 Gbps) for seamless graphical and sensory data trans-
fer. In contrast, smart agriculture applications may leverage BsG MIMO technology operating in
the 1-10 GHz frequency range to achieve higher spatial resolution for radio access points (RANS).
However, it does not necessitate the stringent latency or bandwidth requirements of remote surgery
and exhibits lower sensitivity to network instability. This inherent heterogeneity in service demands
significantly influences the cost models associated with MTD actions, ultimately complicating the
optimal MTD policy. Notably, the negative effects of applying a uniform network performance ap-
proach could be significantly more detrimental to a service like remote surgery compared to smart
agriculture.

Moreover, in the context of ML-based optimization, there is the constraint to initially train the ML
model on a representative yet limited testbed. Thus, the optimization model’s performance must be

subject to re-evaluation within the context of the practical network’s settings and requirements.

DATA CHALLENGES

The significance of data engineering during the MTD optimization process cannot be overstated.
Given the diverse range of objectives under consideration for the optimization of the MTD strat-
egy, a comprehensive aggregation of real-time data sourced from the network’s monitoring infras-
tructure is necessary. Next, to harness the value of such data, it becomes imperative to establish a
well-designed reward system. This system translates the collected data into quantifiable metrics that
reflect the network’s status toward the objectives outlined in the optimization problem. Furthermore,
itis crucial to exercise caution when training ML models on monitoring data of public networks. This
practice carries the inherent risk of revealing sensitive information, such as end-user personal data,
and impairing privacy. Consequently, vigilant safeguards must be implemented to avert any inadver-
tent data leakage from the model. Additionally, privacy-preserving data analytics techniques could

be employed.

MTD IN A MULTI-TENANT B5G NETWORK

An envisioned advanced MTD design for BsG networks involves the integration of a multi-tenant

federated MTD approach, aimed at capitalizing on the diverse range of network experiences and
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threat intelligence of various VNOs. Different architectural patterns exist for such a federated so-
lution. One approach entails a centralized MTD model operating within a hierarchical relationship
among tenants/operators. An alternative perspective relies on a distributed MTD model character-
ized by a peer-to-peer (P2P) tenant structure, where independent decision-making systems function
autonomously. While the former exhibits simplicity in implementation, it requires trust and data
transparency — frequently impossible to facilitate. In contrast, the latter P2P configuration offers
tenants greater independence but amplifies the difficulties associated with intelligence sharing and
interplay between disparate models. Another prospect is hybrid systems containing both federated
and locally oriented decision-making systems. However, such approaches necessitate incorporating
a contflict resolution system. For instance, a hierarchy could be established among these decision-

making systems, prioritizing the local model over the federated one, or vice versa.

SUSTAINABLE SECURITY

The exploration of energy-efficient MTD orchestration as another optimization objective constitutes
a relevant research direction in light of environmental considerations pertaining to sustainable en-
ergy consumption and the overarching goal of achieving a global net-zero footprint and UN Sus-
tainable Development Goals (SDG) [31]. In this context, the integration of MTD techniques can
consider the carbon emissions associated with network slices” activities, e.g. by strategically placing
VNFs within cloud nodes powered by green energy sources rather than fossil-fuel-powered nodes.

Furthermore, the energy cost for MTD actions can be integrated into the optimization model.

SECURITY AND EXPLAINABILITY OF ML-BASED MTD PoOLICIES IN CRITICAL INFRASTRUCTURES

While an MTD framework provides an additional layer of security to future networks, it can also be
a new point of attack that can be exploited. The ML model, for instance, is a sensitive attack surface,
as it can be vulnerable to hijacking, poisoning attacks during training, evasion techniques such as
adversarial example attacks, or triggering meaningless MTD operations as a DoS attack and resource
waste [3]. Measures can be implemented to safeguard data integrity and authenticate the origin of
data, particularly from network endpoints providing monitoring data.

For technical, economic, and legal reasons, the decisions of the ML agents should also be hu-
manly explainable (i.e., with statistics, heuristics, and formal logic). For instance, the European Union
Agency for Cybersecurity (ENISA)[32] emphasizes the explainability of Al and ML algorithms, es-
pecially Deep Neural Networks (DNN), which are not explainable by nature. However, Integration

of explainable Al into MTD is not a trivial task and remains an open research question.
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2.3 LIVE MIGRATION OF SERVICES

As introduced in the previous section (Section 2.1), Telco Cloud networks, such as 5§G/BsG, ex-
pand telecommunication networks with cloud-centric data centers and edge nodes, inheriting the
properties of cloud infrastructures. Such properties range from the virtualization of resources to pro-
grammable networks, both used to facilitate the orchestration of network functions managing the
telecommunication infrastructure, and the final applications provided to end-users. In this context,
Live Migration (LiMi) plays an increasingly critical role in these environments by enabling seamless
application mobility covering the edge-to-cloud continuum, thereby maintaining these requirements
and enabling agile services. LiMi, or hot migration, of virtualized services, whether hosted as VMs
or containers, consists of migrating the service’s instance from the host machine to a new one while
the service is being available to the end-users. This opposes cold migration, where a migrated service
needs to be stopped first, hindering the continuity of its functions. This disruption, even in the or-
der of tens of seconds, can be undesirable when dealing with live or critical applications such as live
video streams, autonomous vehicles (e.g., drones and cars), healthcare systems, and industrial control

systems.
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Figure 2.8: Essential features in ICT systems enhanced by LiMi [33].

LiMi can be used to perform MTD operations, which is one of the main focuses and contributions
of this thesis. In fact, LiMi could be used as a service shuffling method to improve the isolation of ser-
vices in multi-tenant hosting infrastructures, to enhance networks’ resilience against cyber threats,
and to maintain fault tolerance and availability of networked services. Lime also improves the adapt-
ability to new regulations and security policies (whether for technical or geopolitical considerations),
Finally, LiMi could also be used in other relevant topics, such as managing and optimizing the car-

bon footprint associated with networked applications. This aligns with the imperative of developing
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networking practices that align with the Net Zero emissions and climate-neutrality targets set or con-
sidered by over 100 countries in international UN organizations and various agreements, including

the Paris Agreement [34].

2.3.1 SECURITY PROPERTIES OF LIVE MIGRATION

LiMi plays a crucial role in today’s network evolution to ensure and improve various requirements
(depicted in Figure 2.8) of applications in the edge-to-cloud continuum, such as isolation, adaptabil-

ity, resilience, availability, security, and resource efficiency.

IMPROVED ISOLATION IN MULTI-TENANT INFRASTRUCTURES (NON-STATIC HOSTING)

Most cloud-hosted services share their infrastructure with other tenants and owners of various ser-
vices. The hypervisors managing the service instances are often vulnerable. While vulnerabilities that
allow direct unauthorized access to third-party resources are rare and quickly disclosed and patched,
other, more passive attacks, such as side-channel attacks, are more common. Side channel attacks al-
low attackers to get sensitive data on neighboring VMs or containers hosted within the same node [ 35—
37]. By dynamically migrating such VMs and containers, the time exploitation window of such at-
tacks is substantially reduced as services move to different nodes and locations of the cloud infras-
tructure. Recent studies and solutions also deal with the isolation problem using the TEE technol-
ogy [38]. In this scenario, containers and VMs run in encrypted enclaves, guaranteeing confidential-
ity even in a multi-tenant system. Enabling LiMi for such TEE-protected systems becomes relevant
to provide an additional layer of isolation while also removing static-hosting constraints on services.
In fact, another feature enabled by LiMi against multi-tenant threats is the on-demand allocation
of a private physical node within the cluster, which would only be used by a single applicant. This
entails the LiMi of the services of the applicant to the new node and the displacement of unrelated
resources to other nodes. LiMi to a dedicated physical node is also critical in scenarios of scaling
out the service and in High-Performance Computing (HPC), to avoid performance interference and

ensure consistency throughout the service execution.

ADAPTABILITY TO CHANGING POLICIES AND REGULATIONS

An important property needed for cloud-based infrastructures is the possibility to dynamically adapt
to changing policies and regulations. For instance, with the advent of the European General Data
Protection Regulation (GDPR), the personal data that is generated in Europe cannot be stored or

processed outside of the European territory unless an ‘Adequacy Decision’ is offered by the European
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Commission or a user explicitly consents ( and can revoke ) the transfer of their data [39]. At the
occurrence of this kind of new regulations, especially when frequently happening (i.e. due to shifting
geopolitical conditions), LiMi would allow swift adaptation with minimal efforts by migrating the
resources, data, and processing applications to the required location (assuming the infrastructure at

such a location is available).

IMPROVED PROACTIVE AND REACTIVE SECURITY

LiMi of services dynamically alters the attack surface of cloud-based infrastructures, making it a ver-
satile MTD mechanism. Reactively, LiMi can mitigate detected attacks by relocating services away
from compromised nodes, effectively evading ongoing threats. Proactively, LiMi reduces the ASP
by periodically shuftling workloads, thereby disrupting attacker reconnaissance and exploitation at-
tempts, even for undetected threats. This approach is particularly effective against advanced cloud-
based attacks, including side-channel attacks, data exfiltration, isolation evasion techniques (such as
vertical movement in multi-tenant environments), and malware propagation [33]. The efficacy of

LiMi as an MTD strategy against these threats is rigorously analyzed and evaluated in this thesis.

INCREASED AVAILABILITY AND RESILIENCE

These fundamental and classic requirements have always been targeted at the different levels of ICT
systems: software engineering, hardware, infrastructure, and networking. The different levels have
possibly met and culminated in the virtualization technology with the microservices paradigm[40],
which is changing the way software is developed, served, and managed in new cloud-based network-
ing infrastructures. It is in such an environment that LiMi sees its best prospect and usage, as it uses
the characteristics of microservices-based ICT systems: modularity, portability, replicability, distri-
bution, and autonomous orchestration. In microservices, availability and fault tolerance are mainly
improved with the replication of the applications and the load balancing of requests to the various
replicas. LiMi can keep the same level of availability across different distributed nodes while con-
taining the number of replicas, which consume more resources. Moreover, traditional microservice
replication only applies to stateless microservices, i.e., applications that only need the VM/container
image to start serving the service, as that does not make use of dynamic contextual data or state.
However, with LiMi, both stateless and stateful running applications can be migrated from one node
to another, making it possible to also migrate the clients’ connections. In MEC and fog comput-

ing scenarios, this also enables bringing the service closer to mobile users, thereby improving the
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availability and quality of service (QoS) in use cases such as smart connected vehicles and mobile

devices [41] [42-44].

ENERGY AND CARBON FOOTPRINT CONTROL

The power consumption of datacenters and cloud infrastructures in 2022 was 240-340 TWh, about
1-1.3% of global electricity use [45]. Despite notable improvements in efficiency, the substantial
increase in workloads managed by data centers has led to a significant rise in energy consumption,
experiencing an annual growth rate ranging between 20-40% [45].

LiMi can serve as a mechanism for regulating and overseeing energy utilization. Restricting ap-
plication replicas while maintaining high service availability via migration offers a means to limit
resource and energy consumption, as previously discussed. An alternative approach, referred to as
“consolidation”, involves live migrating all active applications within a cluster to a minimal number of
server nodes, as demonstrated in Hermenier et al’s work on Xen VM migrations [46]. This practice
enables the hibernation ofidle server nodes during periods of decreased resource demand, effectively
mitigating energy consumption. In fact, even at alow 10% CPU utilization, the power consumption
remains high, exceeding 50% of the host’s maximal power consumption [47]. Conversely, in certain
higher workloads, distributing applications across more nodes can result in reduced waste heat dis-

sipation, thereby lowering the energy consumed by cooling systems, along with improving the user’s

QoS.

2.3.2 LIVE MIGRATION METHODS AND TAXONOMY

LiMi and most of its optimization techniques originated with VM technology [48-55].
The same principles and optimizations are transferable to container runtimes as well. LiMis can be
classified as inter-cluster or multi-cluster. In inter-cluster migrations the application is moved between

nodes of the same cluster, and this can be performed in two different ways:

« Over shared storage, where the volume and data of the application are immovable and placed
in a storage network, which will be mounted on the application instance in the new node (see
Marker (1) in Figure 2.9)[51].

« Over the network, where the volume and data of the application are attached to the running

instance and are moved altogether through the network (see Marker (2) in Figure 2.9)[48].

In multi-cluster migrations, the application is transferred from one cluster to the other, and this can

be extended to multi-cloud and/or multi-vendor migrations [56]. As the destination in these sce-
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Figure 2.9: Types of LiMi in a multi-cloud environment [33].

narios is far from the source, the storage network cannot be the same, as it will create a big commu-
nication overhead in latency and traffic, hindering both application QoS and network resource con-
sumption. The full application transfer then happens over the WAN/Internet, as shown by Marker
(3)in Figure 2.9, making it a slower process compared to inter-cluster migrations, depending on the
geographical distance between source and destination nodes, the quality of the physical connection,

and the size of the application to migrate [53].

VM vs CONTAINER L1M1

In this subsection, we point out some differences between VM LiMi and container LiMi, summarized
in Table 2.1.

With respect to literature coverage, scientific contributions, and technological maturity, VM LiMi
is at an advantage as it came first and has been extensively used (and is still being heavily used) in
critical infrastructures by industries and enterprises. Thus, VM LiMi has a larger knowledge base and
finds itself more reliable and used compared to its container-based counterpart, which is a relatively
newer technology that has been less tested in enterprise environments.

In theory, VMs are also more portable compared to containers, and thus, they have fundamentally
fewer constraints for the destination node to enable the migration. On the other hand, containers are
dependent on libraries of the host’s OS, thus requiring the same libraries (or OS) on the destination

host. However, in real-life LiMi scenarios, this difference between VMs and containers in terms of
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Table 2.1: VM vs container LiMi.

Factors VM migration Container migration
Maturity Mature enterprise use of migration technology. | Newer andless documented in enterprise use
cases.

VMs are more portable as they are independent | Containers are dependent on libraries of the
Flexibility of the host OS, enabling, in theory, LiMi with | host’s OS, thus requiring the same libraries or
fewer/no constraints on the host machine. OS on the destination host.

VM LiMi’s optimizations mostly depend on | Almostall container LiMis are currently done
specific implementations, thus requiring the | with CRIU, which runs on any Linux OS, in-

same hypervisor at the destination. dependent of the container orchestrator.
VMs are generally large implementations of an | Containers are small single applications run-

Efficiency entire ecosystem with multiple software/appli- | ning as modular components in a microser-
cations = reduced control of migration granu- | vices environment => high control of migra-
larity. tion granularity.

A VM image size is in the order of gigabytes, re- | Container ~images are measured in
quiring greater bandwidth consumption during | megabytes, making the migration less
migration. taxing on the network.

The significant data transfer causes a longer mi- | Lightweight container images cause shorter
Performance | gration downtime (during which service is un- | migration downtime.

available).
VM warm startup (which excludes the first | Container warm startup is in the order of
boot) is in the order of seconds. The startup | milliseconds. However, the first boot (cold
time contributes to increasing the migration | startup) is similar to or longer than VM’s boot
downtime. due to filesystem remap.

portability/cross-migration could be reversed. This is because VM LiMi implementations, especially
with live optimizations, are mostly closed-source and licensed, such that both source and destination
nodes are required to run the same hypervisor (or one from the same vendor). However, almost
all containers’ LiMis, especially with live optimizations, currently use the open-source library CRIU
(further described in Chapter 4, Section 4.3 ), which can run on any Linux OS, making it more usable

across a variety of infrastructures and vendors.

Because VMs are much larger in size, they take longer to migrate, and for the time-constrained re-
quirements of live/hot migration, this is a significant drawback. On the other hand, container images
are much smaller and lightweight, leading to faster migration with reduced data transfer and network
overhead. Kotikalapudi et al. [57] demonstrated that migrating the identical service with a 66%
workload, encapsulated within a system container, exhibits a 45% acceleration and a 75% reduction
in downtime compared to its encapsulation in a VM. For a meaningful comparison, the authors used
Linux containers (LXC), which are full system containers providing an entire Linux system and its
kernel, as opposed to application containers such as Docker, which only package the application and

its dependencies (which would further reduce the container’s size).
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Because VMs have to initiate a full operating system’s (OS) kernel, VM-based applications have
significantly longer spin-up times [ 58], meaning it takes longer for a service to be available and served
at the instantiation phase (it generally takes minutes with VMs and a few seconds, often milliseconds,
with containers). These times can be added to the downtime of the service during the migration (i.e.,
the time where the service is not available to the end-users). This is relevant to stateful applications,
as opposed to stateless applications where the instantiation time can be neglected, as further clarified
in the next Section (2.3.2).

Another important difference is the way applications are implemented when using VMs compared
to containers. For instance, when vendors implement their virtual network functions (VNFs) for
Telco Cloud networks following the NFV standard[ 10], they tend to implement all the components
needed in one single VM, making it one big component. On the other hand, for CNFs, they take the
microservices approach, implementing multiple smaller services in portable and more or less inde-
pendent containers that are easier to transfer. Hence, the relevance and importance of LiMi research

in microservice architecture for future networks is evident as described in the previous section.
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Figure 2.10: Stateless vs stateful service LiMi [33].

STATELESS LIM1

LiMi methods and algorithms also differ based on whether the service to migrate is stateless or state-
ful. Stateless services are, for instance, the majority of firewalls, DNS servers, or network gateways

that do not have a dynamic context to keep and only have rare changes in their configuration that
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could be added preemptively to the system image used to start the service. In this case, the LiMi be-
comes much more accessible and efficient because there is no need to transfer the running instance
and its volume. A new instance of the stateless service can be created at the destination node while
the old instance is still running. Once this new instance is ready, the clients’ traffic is redirected from
the old instance to the new one. The relevant property of this method is the minimal service dis-
ruption that happens only during the traffic redirection, in the order of milliseconds, as depicted in
Figure 2.10a. In contrast, the downtime of stateful services includes the transfer time of the applica-
tion state (comprising the VM or container volume) and the spin-up time for the application to start

at the destination node, as depicted in Figure 2.10b.

Another relevant property of stateless migrations, in contrast to stateful ones, is that the image
used to start the new instance at the destination node is an original image of the service that can be
guaranteed not to contain any malware or backdoor that was installed during a previous service life-
time cycle. That s to say, even when the previous instance of the service is unknowingly infected with
an advanced persistent threat (APT)[59], after a stateless LiMi, such infection is effectively removed
from your service. This property alone makes stateless LiMi a highly required security feature for
future networks, while stateful LiMi does not have this property and would transfer the infection or
APT along with the service’s instance. Unfortunately, stateful services are the most common types
of services and therefore a relevant challenge is how to make this security property applicable in such

circumstances. This challenge is further discussed and tackled in Section 4.3.

STATEFUL LIM1

Stateful services have a dynamic context and use data that frequently changes during its life cycle.
Therefore, the standard method to live migrate them is to stop the instance (i.e., the VM or container),
make a checkpoint of the instance’s state, transfer this checkpoint to the destination node, and restore
the instance from the checkpoint (as depicted in the Figure 2.10b). The main issue with this method
is that the checkpointing of the service is performed during the state dump process. The state dump
requires the instance to stop, implying that during the whole migration process, the service is not
available to the end-users. This leads to a service downtime that depends on the service’s instance
size, checkpoint transfer speed, and instance restoration time. Thus, three optimization methods are

traditionally used to solve this problem and reduce the service disruption:
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Figure 2.11: Different stateful LiMi optimizations [33].
PRE-COPY OPTIMIZATION

The pre-copy or iterative optimization method is depicted in Figure 2.11a and consists of perform-
ing preliminary service state checkpointings, called pre-dumps, that do not require the service to be
stopped [48]. As the service is still in use, the service state can change during the pre-dump, and the
difference, named delta, is the only data that requires the service to freeze in order to be checkpointed
and transferred with a dump call. The dumped delta is then merged with the pre-dumped images, al-
lowing to restore the full instance at the destination node. To reduce the delta to its minimum, the
pre-dump can be iterated several times before the final blocking dump. The iterative pre-dumps only
consist of those memory pages that have been modified, also named dirty pages, that are added to the
pages of previous pre-dumps [54]. The pre-dump iteration is configured by setting the maximum
number of iterations wanted and the number of new dirty pages below which the blocking dump can
be called to resume the migration. This configuration can be set and optimized with heuristics based
on the service nature, as too many pre-dump iterations increase the overall migration time and net-
work overhead, while a short pre-dump phase would instead increase the service downtime based
on the frequency of memory changes in the service. Elsaid et al. provided a survey on the literature

focusing on the pre-dump parameters’ optimization using mathematical models and heuristics [60].
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In a separate study, Ma et al. [54] enhanced the pre-copy method to limit the iteration process to five
iterations. This involves the exclusion of the most frequently updated memory pages from immedi-
ate copying, marking them to be copied only at the last round of the iteration process. Their method
allows for a reduction of up to 34% of the total transferred data and up to 32.5% of the total migration

time.

PoST-COPY OPTIMIZATION

The post-copy or lazy migration method is another optimization method designed to reduce service
downtime and is depicted in Figure 2.11b. It first transfers with a blocking dump only the essential
state that allows the instance to start at the destination node, such as the CPU state and the registers.
Once the service runs and is available to users, the remaining memory pages are then injected into
the running task address space in a phase called pre-paging, to restore the full-service state[ 61 ]. While
the post-copy allows the downtime to be consistently reduced independently of the size or the update
frequency of memory in the application, the quality of service (QoS) gets degraded when users’ tasks
need data that s still to be injected, moving from latency levels of RAM to considerably worse latency

levels of network i/o operations.

HYBRID OPTIMIZATION AND COMPARISONS

Other hybrid optimization methods exist using both pre-copy and post-copy methods [ 55 ], as illus-
trated in Figure 2.11c. The objective of a hybrid method is to use the pre-copy to reduce the time of
the pre-pages migration phase, in order to reduce the exposure to a communication failure. At the
same time, the post-copy would reduce the number of pre-dumps, making the total migration time
less dependent on the frequency of memory changes in the application. However, as summarized in
Table 2.2, the hybrid method also inherits both the drawbacks of pre-copy and post-copy, making it
the method with the longest total migration time, as it has both a pre-dump phase and a pre-paging
phase. The next subsubsection details the performance evaluations in the literature, pointing out
which methods to use based on the characteristics of the service to migrate, the network and infras-

tructure in place, and the requirements of the service.

2.3.3 DyNAMIC NETWORKING SUPPORT FOR LIVE MIGRATION

During LiMi, successful traffic redirection is crucial to maintain service availability for users after

an instance is restored at the destination node. This redirection can be achieved through various

34



Table 2.2: Evaluation and comparison of different LiMi methods [33].
Factors basic Pre-copy Post-copy Hybrid
Total migration time | lowest low low (except with | highest
throughput ~ PDR)
Service corruption no no possible possible
Downtime high low (except with | low low
throughput ~ PDR)

QoS degradation no no yes yes
Total transferred data | low high low middle

methods, all with the common goal of minimizing latency and QoS overhead. The choice of method

depends on the ecosystem’s properties and the migration scenario, as illustrated in Figure 2.12.

Parameters of traffic relocation

A7

L7

users position

migration type

v v v v
inter- multi-
local || external
cluster| |cluster
v v v
SRS network layer service type
accessibility y yp
v v v v v v v
dynamic| |static | | layer layer layer | |long lived| |short lived
IP IP 3 4 7 sessions sessions

Figure 2.12: Taxonomy of traffic relocation for LiMi [33].

These methods encompass:

1. Service users’ position: this varies based on whether the users are connected externally (i.e., via

the internet) or whether they are in the same local network or infrastructure of the application;

2. Migration type: this depends on whether the service is migrated within the same cluster or on

a different one;

3. Accessibility: this depends on whether the IP of the service can be different after the migration

or if it should keep the same IP for external accessibility;
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4. Network layer: this factor depends on whether the connection handover of communication
happens at the IP layer (i.., layer 3 of the TCP/IP stack), transport layer (i.c., layer 4), or at the
application layer (i.e., layer 7);

5. Service type: this depends on whether the service is using TCP short-lived sessions (e.g, HITP
requests or REST API requests) or TCP long-lived sessions (e.g, Internet-of-Things (10T de-

vices, real-time applications, or network file transfers);

For LiMi within the same cluster or LAN, a service can keep the same IP address performing the
network migration at the link layer (i.e., layer 2) using ARP packets to update the IP and MAC ad-
dress mapping in the order of tens of milliseconds [48]. For wide area network (WAN) migrations,
the redirection has to happen at the transport layer or application layer. Most of the proxies imple-
mented for load balancing at the transport layer make use of dynamic DNS, iptables, or Linux ker-
nel’s IP Virtual Server (IPVS) to perform network address translation (NAT). Replies will also be
redirected with a reverse DNAT rule, keeping the private IP hidden from the end user. As UDP
is connectionless at the transport layer, packets are accepted and directly pushed to the application
layer. However, when dealing with TCP-based traffic, each packet is bound to a connection defined
by the tuple (src_ip, src_port, dst_ip, dst_port). Using simple DNAT will work only
for newly established connections, while old running connections continue to use the old private IP
as a destination until their end. This results in a service disconnection for such instances when the
service at the source is terminated, leading to an ungraceful attempt to reconnect with the new IP
address. Further details on the state-of-the-art methods for traffic redirection in LiMi are given in the

literature review chapter of this thesis, Chapter 3, Section 3.3.

2.4 ML FUNDAMENTALS AND ML ALGORITHMS

Machine Learning (ML) is a branch of Al focused on developing systems that can automatically learn
from data and improve their performance on specific tasks without being explicitly programmed with
a human-designed algorithm. ML is generally split into three main categories: supervised learning,
unsupervised learning, and RL. While supervised and unsupervised learning primarily address pat-
tern recognition problems (e.g,, classification and clustering), RL focuses on optimizing sequential
decision-making processes through trial-and-error interactions with an environment.

In supervised learning, the most common approach to classification, models are trained on labeled
datasets, where each objectis already assigned to a specific class. The ML model then learns to predict

the class of unlabeled objects. Provided the dataset is comprehensive and free from issues like class
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imbalance, bias, or errors—often the most challenging aspect of implementing an ML classifier—
performance evaluation becomes straightforward. Standard metrics such as false positive rate (FPR),
true negative rate (TNR), recall, accuracy, and precision are used to measure the model’s performance

by comparing its predictions to the ground truth.

In contrast, RL faces a different challenge in optimizing decision-making processes, as there is no
pre-defined ground truth for comparison. The performance of an RL model can only be assessed
through practical comparisons with other RL models or against predefined key performance indica-
tors (KPIs).

The following section describes the principles of RL algorithms, how the environment it interacts
with (in our case, the sG/BsG telecommunication network) is modeled into a Markov Decision
Process (MDP), and how this formalization is used in different RL algorithms to learn the optimal

decision policy.

2.4.1 RL AND MDP MODELING

As depicted in Figure 2.13, RL involves training a decision agent to optimize sequential decisions
based on experience, resulting in learning overall complex behaviors. Here, the agent learns by inter-
acting with an environment, observed and modeled as a Markov Decision Process (MDP), a discrete-
time stochastic control process. Formally, an MDP is defined by a tuple (S, A, P, R, y) where S is the
set of states of the environment, A is the set of actions that the agent can take, P is the transition prob-
ability matrix defining the probability that an action a; changes a state s; to a new specific state s;, R is
a set of reward values for all (a;, 5;) pairs and 7 is the discount factor defining the importance of the

immediate rewards over the future rewards.

)
o model decision

Observation Action

S

Q model evaluation

Figure 2.13: Interaction of the RL agent with the modeled environment.
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The agent receives rewards or penalties (i.e. negative reward values) based on the observed effects
of its actions on the environment, aiming to maximize its camulative return, denoted as G;, which is
the sum of rewards accumulated throughout the RL task.

RL tasks can be finite (i.e., episodic tasks), where an episode consists of a defined starting and
ending state within the MDP, or infinite (i.e,, continuous tasks), where the MDP has no terminal
state. An example of an episodic task is a game, which concludes with a win or loss, while continuous
tasks typically involve management and orchestration tasks, such as the MTD strategy optimization
formulated in this thesis. In continuous tasks, where there is no defined endpoint, the return is com-

puted using the discount factor ¥ as follows:

G = Ry, + YRy, + 7’th+3 +oe = Z Yth+k+1
k=o

The RL agent’s goal is to update its policy 7, which represents the probability distribution of all
actions a in the action space A for each state s in the state space S, until the policy converges to the

optimal policy 7* that maximizes the return, i.e.,
7" = argmax,E,[G/S; = s|,Vs € S

This optimization can be approached in two ways: 1. by evaluating states and actions of the MDP
using value-based methods, such as the Bellman equation [62], Q-learning [63 ], and state-action-
reward-state-action (SARSA) [64]; or 2. by directly evaluating and fitting the policy function using
policy-based methods, which include algorithms like policy gradient [65] and REINFORCE [66].

A third hybrid approach, known as actor-critic methods, integrates the advantages of both value-
based and policy-based approaches. This architecture features two complementary components work-
ing in tandem: the actor implements the policy function and determines which actions to take, while
the critic assesses these actions by calculating their estimated value (through either state-value or
action-value functions). The critic’s evaluations provide essential feedback that guides the actor in
refining its policy to optimize reward outcomes. This synergistic design allows actor-critic methods
to capitalize on value-based methods’ stability and computational efficiency while retaining policy-

based methods’ adaptability and ability to directly optimize policy performance.

2.4.2 DNN INTEGRATION AND DEEP-RL TAXONOMY

Value-based and policy-based methods are examples of what are known as model-free RL algorithms.

These algorithms operate without requiring a predefined model of the MDP, instead estimating the
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policy value solely through interaction with the environment. RL faces the problem known as the
“curse of dimensionality”, occurring when the environment’s exploration space is extremely large,
involving a vast action or state space. Agents may use a predictive model that constrains the explo-
ration space. These predictive models serve as guides or frameworks for the learning process, leading
to faster convergence (i.e., quicker training). However, these models may introduce limitations in

asymptotic performance due to inherent modeling restrictions or biases.

Model-free RL algorithms impose fewer constraints on the model and employ exploration mech-
anisms to prevent the agent from becoming trapped in local optima [67]. However, it suffers from
the curse of dimensionality problem requiring extensive interaction with the environment to learn ef-
fectively. Deep-RL helps address this inefficiency by approximating the optimal policy using DNNs
rather than greedy tabular-based algorithms. Deep-RL enabled the agent to handle complex high-
dimensional environments [68], contributing to major AI/ML breakthroughs in various fields such
as robotics, autonomous driving vehicles, and more recently, generative conversational applications
like ChatGPT [69]. ChatGPT employs a semi-supervised training method, incorporating deep-RL
to optimize Large Language Models (LLMs) based on human feedback.

Deep-RL algorithms have an extensive taxonomy as DNNs have been applied on value-based meth-
ods, such as with Deep Q-Network (DQN) and its variations [70-72], on policy-based methods,
such as Trust Region Policy Optimization (TRPO) [73], and actor-critic methods, which sees the
currently most used state-of-the-art deep-RL algorithms such as Asynchronous Advantage Actor
Critic (A3C) [74], and Proximal Policy Optimization (PPO) [75]. Actor-critic methods are a hy-
brid approach combining both value-based and policy-based methods, such that the RL agent uses
an actor component to directly optimize the policy and a critic component that evaluates the pol-
icy through the value function. Other more advanced deep-RL methods have also been proposed,
such as multi-objective deep-RL [72, 76, 77], partially-observable MDP (POMDP) based deep-
RL [78, 79], and multi-agents deep-RL [80].

2.4.3 FEDERATED LEARNING AND FEDERATED DEEP-RL

Federated Learning (FL) is an area of ML focused on methods that enable multiple, distributed par-
ties to collaboratively train a shared ML model using each party’s locally held data. This collaborative
approach results in a model that is more robust and accurate than those trained on any single party’s
data alone. The training of the ML model is then extended to two steps: 1. the first standard step is

the local model training, in which the local participant i obtains optimal model weights w! at timestep
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t minimizing the value of the loss function L(w!), i.e.,

wh = arg mitnL(wf)

wi

2. The second step is the global model aggregation, where the different participants aggregate their
weights w} using algorithms such as FedAvg [81] to a global model weight w, minimizing the global

loss function L(w%), i.e.,

N
¢ . £y _ 1 t
wg = argmwinL(wG) = argrrvlvlﬁn N ZL(wi)

n=—1

FL addresses the challenge of low sample efficiency, particularly in cases requiring substantial data
diversity to improve model generalization. By enabling parallel model training across distributed
data sources, FL accelerates learning and convergence rates through effective information exchange
among participants. Additionally, FL is particularly valuable for privacy-sensitive applications where
direct data sharing is not feasible due to confidentiality constraints, as it provides a privacy-preserving
mechanism for model aggregation that merges model weights without exposing local data. The pri-
mary goal of FL is to derive an aggregated model Mggp that would have approximately the same per-
formance Vggp as a single ML model Mgy, that would be trained on the union of all parties’ data
in a centralized setting. Formally, let ¢ be the real number defining the FL's performance loss, the

objective is then to minimize ¢, ideally achieving:

|Vsum — Viep| < e = o

FL can be categorized into horizontal FL (HFL) and vertical FL (VFL). HFL applies when each
party has datasets with the same feature and label spaces but different sample sets. In contrast, VFL
is suitable when parties possess data on the same samples but with different features or label spaces,
allowing them to combine distinct but complementary information about each sample to train a uni-
fied model effectively. As shown in Figure 2.14, FL architectures can also be classified as either cen-
tralized or decentralized. In centralized FL, a designated aggregator coordinates the updates from all
participants and consolidates them into the global model. By contrast, decentralized FL (peer-to-
peer FL) allows each party to share model updates directly with peers, following consensus protocols

that define model exchange rules and manage redundancies.
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Figure 2.14: Centralized and decentralized FL architectures.

Federated Reinforcement Learning (FRL) applies FL concepts to RL, with Horizontal FRL (HF-
RL) and Vertical FRL (VFRL) as analogous categories to traditional FL. FRL methods enable agents
tolearn from distributed environments with similar properties, such as edge domains in a telecommu-
nication network, thereby improving policy performance and robustness by aggregating insights from
diverse state-action-reward dynamics across different edge environments, while respecting the edge
constraints inherent in distributed data settings. For this reason, and given the shared challenges be-
tween FL and multi-agent deep-RL, namely efficient multi-party training and secure model-sharing,
the integration of FL into deep-RL has become a research field of interest in this thesis and an area of

active research.

2.5 SUMMARY OF THE THESIS FUNDAMENTALS

This chapter established the foundational knowledge necessary for understanding the key contribu-
tions of this thesis. In Section 2.1, we reviewed the architecture of 5G networks, focusing on their
distributed MEC layout within edge and core domains. We also examined ETSI NFV’s virtualiza-
tion paradigm, detailing VNFs and CNFs and their flexible management through VMs and container
runtimes, which enables the application of MTD strategies as an added security layer in telecom-
munication networks. Section 2.2 provided an overview of MTD, which this thesis integrates into
5G/BsG networks to enhance network defense and resilience against both proactive and reactive
threat scenarios. The thesis also focuses on optimizing the deployment of implemented MTD op-
erations, addressing most of the optimization challenges stated in Section 22. This includes the data
challenge (i.e., gathering data for near real-time monitoring, modeling the state of the network, and
quantifying the optimization objectives) and the challenge on multi-tenant networks (keeping data

private in optimization’s collaborations and maintaining self-managed orchestration).
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In Section 2.3, we introduced the LiMi concept, underscoring its value in virtualized environments
and the increasing adoption of container-based LiMi. The thesis leverages LiMi as an MTD mecha-
nism specifically to secure VNFs/CNFs, neutralizing intrusions and malware infections for stateless
network functions, and isolating infected stateful instances upon detection. Finally, Section 2.2.2 ex-
plored machine learning, with a focus on deep reinforcement learning, as a framework for optimizing
decision-making challenges relevant to MTD strategies in dynamic network contexts. Specifically, in
Section 2.4.3, we introduce FL, proposed in this thesis as a means to distribute MTD strategy optimization

across operators and throughout the multiple edge domains within a shared §G/BsG infrastructure.
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Literature Review

HIS chapter reviews the literature and the SotA for the solutions proposed in this thesis. The
T primary contribution of this thesis is a comprehensive framework for integrating cognitive
MTD within §G/BsG networks, providing a procedural methodology and a high-level architecture
we name MERLINS (see Section 4). This is followed by the design and implementation of five dis-
tinct solutions that constitute an implemented version of the MERLINS architecture. Accordingly,
this chapter is structured into five sections, each dedicated to examining related works and the SoTa
approaches pertinent to each solution developed in this thesis, as shown in Figure 3.1.

The SoTa review was conducted based on the established search of the predefined themes, follow-

ing a search process conducted in two phases:

« Phase 1: The collection of recent and relevant LiMi work was performed based on initial survey
papers collected. This phase resulted in the theme-based aggregation of the formerly surveyed

papers as the baseline set of approaches.

« Phase 2: This had been extended by conducting our own literature search exploring various

digital libraries, such as ACM and IEEE, using their respective search engines as well as Google
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Figure 3.1: SoTa Division.

Scholar. Finally, the augmented body of work in this review is presented in a structural manner,

i.e., with appropriate groupings and corresponding sections.

Tables 3.1, 3.2, 3.3, 3.4, and 3.5 enlist the literature reviewed in the corresponding sections for
their respective themes. Section 3.1 examines traditional SDN/vNIC-based approaches (e.g., [P/-
port shuflling), grounding the MOTDEC solution. Section 3.2 describes the works made to advance
service LiMi, covering both VM LiMi and container LiMi, relevant to the ContMTD solution. Sec-
tion 3.3 identifies the various methods used for network traffic redirection, particularly in the context
of seamless session handover, which forms the foundation for the TopoFuzzer solution. Section 3.4
covers works on game theory and ML-based MTD strategy optimization, including Multi-Objective
RL (MORL), which is used in the OptSFC solution for the MTD optimization method developed
in this thesis. Finally, Section 3.5 presents FL-based optimizations in edge and telecommunication

networks, relevant to the MTDFed solution.

3.1 SOTA ON MTD FRAMEWORKS

Several works have been conducted on MTD mechanisms for traditional networking infrastructures
based on the OSI networking layers, particularly focusing on IP shuflling (both in the IPv4 and IPv6
ranges) and port shuffling at the network layer, as summarized in Table 22.

IP Randomization: Jafarian etal. [82] proposed OpenFlow Random Host Mutation (OF-RHM)
based on IPv4 addresses, which implements a shuffling technique that keeps the real IP addresses of
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hosts unchanged but assigns a random virtual IP address for each host inside the network. OF-RHM
is implemented on Mininet as an OpenFlow-based SDN solution that selects IP addresses randomly
based on their weight. Every time a currently unused IP address is scanned, its weight increases by
one, since an already scanned IP is less likely to be scanned again by an attacker. The interval in which
virtual IP addresses are changed depends on the total size of the allocated address range inside the spe-
cific subnet. This work is especially security-oriented, focusing on worm and external scanner threats.
For the external scan, an IPv4 class B network with 2'° possible hosts was used. Not more than 1%
of the IP addresses to protect have been discovered by the attacker. Overhead is briefly addressed
based on the flow table size, but performance-relevant measurements, like the effective bandwidth,

have not been reported.

IP Randomization and Port Hopping: Sharma et al. [83] proposed Random Host and Service
Multiplexing (RHSM) using IPv4, which uses an IP Shuffling and Port Shuffling technique to hide
the legitimate hosts inside the network. They use a multiplexing method, where multiple virtual IP
addresses and virtual ports are used for the host’s communication with each other. The implemen-
tation was built on an SDN network. Their attack model assumes that the attacker exists outside the
SDN. Their work aligns with the focus of the work in [82]. Overhead is based on the size of the flow
table. The focus is on the domain of IP address and port-based scanners, mirroring a thematic par-
allel with our work. Luo et al. [84] proposed Random Port and Address Hopping (RPAH) based
on IPv4, which deploys an IP Shuffling and Port Shuffling technique to create obfuscation so that an
attacker cannot easily locate a target system. However, it had been deployed for traditional networks,
and, therefore, SDN was not used. The host’s IP address and port dynamically change through a
pseudo-random function that incorporates a secret key, the source’s identity, the type of service, and
a timestamp as input variables. The attack model contains internal and external adversaries as well
as internal and external network scanners, SYN flooding attacks, and worm propagation. However,
the resulting scan success rate of nearly 0% is overly optimistic. In addition, the focus is on perfor-
mance based on throughput and latency measurements. Luo et al. [85] proposed the Test Access
Point (TAP) based Port and Address Hopping (TPAH) based on IPv4, which is similar to RPAH.
TPAH is carried out within a universal virtual-network kernel driver TAP for a general and multi-
platform deployable port and address hopping mechanism. It implements the IP address and port
selection as an output of a pseudo-random function and is based on time synchronization, while its
input consists of the shared secret key, time, port, and address variance range. This work focuses on
the detection and mitigation of port scanning and Denial of Service (DoS) attacks. Furthermore, it

conducts latency measurements to assess the performance.
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More related to the Telco Cloud infrastructure of 5G/BsG networks, Aydeger et al. [86] explored
the use of an MTD framework exploiting SDN and NFV to prevent Crossfire DDoS (Distributed
Denial of Service) attacks and redirect traffic to virtual shadow networks for deception. They demon-
strate the efficacy of SDN-based MTD mechanisms to disrupt reconnaissance attacks with negligible
costs in resource consumption and acceptable network overhead in use cases of videophone applica-
tions (with delay requirements of 150 ms). Similarly, Rawski et al. [87] explored the use of SDN and
NFV to implement MTD techniques, allowing to change the logical network topology and dynami-
cally attach security VNFs (such as monitoring probes or firewalls) to respond to detected threats. In
both studies, MTD actions primarily modify the network’s topology and traffic flow using SDN rules.
The mitigation of the attack is planned with the deployment of a new security VNF, such as a firewall.
However, the protection of targeted VNFs by directly moving them or re-instantiating them is still
not fully explored. These recent research directions with MTD Proof-of-Concepts (PoC) available
apply to emulated environments, leaving research questions unanswered, especially on a practical
impact for §G Key Performance Indicators (KPI).

Table 3.1: Comparison of related work (I-S: IP Shuffling, P-S: Port Shuffling, PoC: Proof of
Concept, S: Security, P: Performance).

Papers I-S | P-S | Deployed| IPversion | Network | Analysis
PoC type

[82] X v IPv4 SDN S

[83] |V X IPv4 SDN S

[84] v |/ IPv4 trad. S+P

[85] v |/ IPv4 trad. S+P

MOTDEC Soft | v v v IPveé SDN S+P

MTD Actions

(this thesis)

3.2 SoTa oN L1vE MIGRATION FRAMEWORKS

This section covers the literature works on LiMi, dividing them into VM-based LiMi and microservices-

based LiMi, which are detailed in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 LIVE MIGRATION OF VM-BASED NETWORK FUNCTIONS

Works like [37] and [36] leverage MTD against vertical movements and data leakage threats (via

side-channel attacks) that exploit isolation weaknesses in hypervisors managing VMs and contain-
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ers. A similar approach, proposed by Moon et al. [35] and named NOMAD, employs VM migration
based on a formal model of information leakage. This model considers factors that increase leakage
rates, including the number of service replicas and potential collaboration between attackers (or ma-
liciously controlled devices). Wang et al. [88] tackle both side-channel attacks and DDoS attacks on
VMs and propose an MTD framework made cost-effective by using a renewal reward theory-based
algorithm (RRT) to evaluate the LiMi costs and determine when to perform the LiMi to minimize
such costs.

Various works, in fact, tackle the VM LiMi optimization problem by considering different factors
in the decision strategies. Torquato et al. [89] present MTD operations based on VM live migration,
offering a decision model that considers the security gains in terms of ASP against the QoS overhead
in the downtime and service unavailability of the migrated service. They present a stochastic reward
net (SRN) model for evaluating the probability of insider attack success in an Infrastructure-as-a-
Service (IaaS) cloud. Nonetheless, in this work as well, the SRN model consists of a conceptual
attack graph that is not reflective of the actual network’s condition and the practical ASP that each
service faces based on the system it runs.

This thesis takes the research question of how to quantify the security benefit of proactive MTD
operations a step further in a more empirical and practical manner. Its contribution is also the opti-
mization of the MTD decision strategy by considering 1) the types of MTD operations, and 2) by
modeling the decision problem into a multi-objective optimization problem that not only considers
improving security against another factor, but takes multiple factors into consideration (specifically,

the improvement of the QoS/QOoE and the reduction of operational costs of the MTD operations.

3.2.2 MICROSERVICES-BASED LIVE MIGRATION

Checkpoint/Restore In User-space (CRIU) is an open-source Linux-based library developed by Vir-
tuozzo, which also operates the VM hypervisor OpenVZ [9o] and is a de facto standard for containers’
Live Migration. CRIU is exclusively implemented in the user-space, ensuring its applicability across
various Linux-based operating systems. It has evolved to become the de facto standard for container
LiMi, seamlessly integrating with major container management and orchestration systems. At the
low level of a container runtime, such as runC and LXC (Linux Container), CRIU enables pre-copy,
post-copy, and hybrid optimizations.

At a higher container orchestration level, CRIU has been incorporated into Docker as a beta fea-
ture, but it is worth noting that, as of the time of writing this survey, this integration does not yet sup-
port the utilization of optimization methods such as pre-copy and post-copy. In contrast, LXD and

Podman integrate CRIU with the pre-copy optimization, while a more recent integration of CRIU
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as a beta feature has been implemented on Kubernetes [91]. Nonetheless, similar to Docker, only
the standard/cold LiMi method without optimization features has been integrated. Kubernetes, ar-
guably the most popular and used container orchestrator, has also presented a new method of live

migrating containers running as StatefulSets in a Kubernetes environment [92].

With CRIU established as the leading container runtime LiMi library, recent research has shifted
towards expanding its accessibility. This focus on democratizing container LiMi aims to make it a vi-
able option to deploy in critical applications and corner cases where container LiMi was not possible:
e.g, containers that deploy Remote Direct Memory Access (RDMA) protocol [93 ], containers using
the Stream Control Transmission Protocol (SCTP) [94], containers using GPU CUDA cores in Al

application [95 ], or again containers running in Trusted Execution Environments (TEEs) [96].

In the telecommunication context, Schiller et al. [ 97] introduce a CRIU-based LiMi framework to
migrate a running CNF. Specifically, the authors migrated the Baseband Unit (BBU) in two types of
mobile networks, namely Long Range Wide Area Network (LoRaWAN) and Long Term Evolution
(LTE) mobile networks. They observed that while migration is possible within LoORaWAN networks,
itis not possible in LTE networks due to the BBU usage of the SCTP protocol in such networks. This
issue is later addressed by Ramanathan et al. [94], which also enables the LiMi of the 5G core cen-
tral unit (CU), containerized as a CNF, that uses SCTP to exchange signaling messages with other
5G NFs. The authors have experimentally validated their implementation in a federated testbed en-
vironment, employing the three LiMi optimization methods (i.e. pre-copy, post-copy, and hybrid)
and a VM-based CU counterpart for a comparative study. Their performance analysis concludes that
the hybrid migration method decreases the downtime of the CU by up to 36% compared to the ba-
sic migration. Moreover, compared to state-of-the-art pre-copy VM migration, the container-based
pre-copy migration reduces migration time by 96.7% and downtime by 75.2%, highlighting the ad-

vantages of containers over VMs.

Kaur et al. present the LiMi of microservices between two remote Kubernetes clusters in the con-
text of migrating CNFs of a Magma 5G core in an NFV-based TelcoCloud network [98]. This work
employs the stateless migration method, where a new instance is started on the destination node

while the source node continues to run the older instance.

Machen et al. [99] present a proximity framework to live migrate different services, both encapsu-
lated in VMs (KVM) or system containers (LXC), from one edge node to another following users’
proximity, to reduce communication latency and improve QoS/QoE. The authors use a layering ap-
proach similar to the pre-copy optimization to reduce the service downtime and present the advan-
tages of live migrating containers over VMs for different types of services: i.e., face detection, video

streaming, game server, RAM-intensive app, and empty shell (i.e., container or VM). In the best-case
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Figure 3.2: Measurements of LiMi without optimization (cold) and with three optimization
methods (pre-copy, post-copy, and hybrid) from Puliafito et al. [100].

scenario (the face detection service) and worst-case scenario (the RAM-intensive service), contain-

ers have 29-fold and 4.7-fold shorter downtimes, respectively, compared to VMs.

Puliafito et al. [100] evaluate the performance of the four different LiMi methods on container-
ized services in two different fog network scenarios: a mobility scenario with very low throughput
and high round-trip time (RTT) for node-to-node 4G/LTE LiMi, and a management/orchestration
scenario using a bridged LAN with higher throughput and lower RTT. Each scenario is tested with
high memory workload (i.e., high page dirtying rate) and low memory workload (i.e., low page dirty-
ing rate), making for four different use cases: presented in Figure 3.2: subfigures (a) and (b) present
results in a 4G network with 11 Mbps of Throughput and 122 ms RTT. Configurations (c) and (d)
present an average network with around 72 Mbps of throughput and 7 ms RTT. (a) and (c) have alow
memory workload while (b) and (d) have a high memory workload. Their results show that the op-
timization methods have similar improvements in downtime compared to the basic/cold migration.
With the mobility scenario having a throughput as low as the page dirtying rate (around 11 Mbps),
the pre-copy method loses its advantage over the basic migration, as the dump phase transfers al-
most all the memory. This indicates that the post-copy and hybrid methods are more suitable in low-
performance networks with memory-intensive applications. Nonetheless, this challenge is gradually
diminishing with the continuous enhancement of current 5G networks and the anticipated advance-
ments in future mobile networks. To illustrate this, a simple practical test of the Swiss 5G connectivity

is conducted using the Swisscom operator’s network. The test involves establishing a §G connection
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Table 3.2: Works on LiMi as MTD.

Papers VM/ Con- | Method Tech Use Case
tainers

Azab et al. | Containers | MTD LXC Evasive LiMi as a proactive MTD
[101] mechanism
MIGRATE Containers | MTD Docker MTD against vertical movements
& RE- and border information leakage in
LOCATE public cloud
[36,37]
NOMAD VM MTD KVM MTD against public cloud side
[35] channel attacks
Wang et al. | VM MTD KVM/ LiMi as MTD against DDoS and
[88] vSphere Covert Channel Attacks
MOTDEC VM MTD with | runc/CRIU | Stateless VNF LiMi and reinstanti-
Hard MTD MORL op- ation
Actions timization
(this thesis)
ContMTD Containers | MTD with | ETSIOSM / | stateful CNF LiMi and parallel mi-
(this thesis) MORL op- | Openstack croservices LiMi

timization

from a mobile device located in Winterthur to a Swisscom endpoint in Lausanne, covering a distance
of 240 km. The test reveals a throughput of 660 Mbps with a latency of 21 ms. Compared to the
mobile network performance used in [ 100], a substantial 60-fold increase in throughput is observed,
coupled with a five-fold decrease in latency, all while the distance between the two endpoints is a
hundred kilometers longer. In this thesis, we re-evaluate the different optimization methods based
on the new 5G network performances and consider different types of services, developing a novel
ML-based LiMi framework that selects the most efficient LiMi method based on the nature of the

service to migrate (further details in Chapter 4, Section 4.3).

The adoption of MTD with container LiMi is being recently explored in various security threat
scenarios more pertinent to generic cloud-centric networks rather than specific telecommunication
networks. Azab et al. [101] quantify the probabilistic advantage of LiMi for MTD by considering
scenarios where services are migrated across cloud hosts, some of which may be compromised. Their
simulations compare the effectiveness of MTD using LiMi when the number of compromised hosts

is either static or dynamic, and they factor in IDS response time. The results demonstrate that con-
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tainer LiMi significantly reduces the probability of service compromise compared to a non-moving

container.

3.3 SoTa oN L1vE NETWORK TRAFFIC REDIRECTION

The redirection of client traffic when migrating a service can be achieved through various methods,
which vary depending on multiple factors as defined in the taxonomy of traffic relocation for LiMi
introduced in Chapter 2, Section 2.3.1. A set of relevant works presenting such methods is presented

in Table 3.3 and further detailed in the following paragraphs.

Bradfordetal. [102] implement a Xen VM migration mechanism that allows such live connections
to reach the new instance using IP tunneling, while new connections find the new instance’s IP with
dynamic DNS. This redirection method incurs a service disruption of approximately 1.04 seconds,
excluding the time for stateful migration. A potential drawback of this approach lies in the exposure
of the new IP address change to end users. This visibility can be detrimental as it allows attackers
to know when an instance is migrating and to discern the IP range used for the service shuffling.
By exploiting this knowledge, targeted attacks could be launched that render defensive migrations
ineffective. Moreover, IP tunneling requires the original source host to remain operational until all
existing connections are terminated. While this poses minimal impact for web services with short-
lived connections, the scenario is significantly different for long-lived connections commonly found
in IoT and live streaming applications. In these cases, the extended persistence of prior connections
can lead to an unwanted increase in resource consumption, as the source node cannot be hibernated,

as well as a decrease in QoS due to the additional step in the data path to reach the new instance.

Fahs et al. [103] present Proxy-mity, a proxy that replaces Kubernetes’s standard kube-proxy for
proximity-aware load balancing. For this, authors use iptables NAT rules, which are limited to redi-
recting only new connection requests; established connections continue to use the old IPs and ports

until they are disrupted by the service instance termination in the source node.

Teka et al. [104] use multipath TCP (MPTCP) for seamless live VM migration between neigh-
bor cloudlets. MPTCP allows the simultaneous use of multiple IP addresses for a single regular TCP
session, providing an alternative solution to avoid the re-establishment of the TCP connection. This
approach hinges on two critical preconditions: 1) prior knowledge of the private IP address allocated
to the new instance, and 2) enabling the services to use MPTCP. The latter requirement poses a signif-

icant challenge for cloud and telecommunication operators, as it necessitates control over the service
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Table 3.3: Traffic relocation work.

Papers VM/ Method | Tech Use Case Objective
Con-
tainers
(48] VM Layer-2 Xen LAN LiMi LAN availability
overlay
[53] VM lightpath | Xen Multi-cluster MAN/WAN
(MAN/WAN) adapta- | availability
tion of [48] on optical
networks
[102] VM IP tun- | Xen Multi-cluster LiMi using | WAN availability
neling & IP tunneling and Dyn-
DynDNS DNS
[103] Container| NAT k8s Proximity-aware load- | Load-balancing
balancing for microser-
vices
[104] VM MPTCP KVM VM WAN LiMi between | MAN LiMi
cloudlets
[105] Container| SDN/P4/ | CRIU VM WAN live IPv6 edge | WAN IPv6 LiMi
SRv6 workload migration
[106] Container| Layer 7 | CRIU Live stream fog service Edge availability
(app)
[107] VM/ SDN n.n. Handover of long-lived | Seamless TCP
con- TCP sessions migration
tainer
[108] VM/ TCP- n.n. Handover of long-lived | Seamless TCP
con- repair TCP sessions handover
tainer
TopoFuzzer| VM/ vNICs n.n. Handover of long-lived | Seamless long-
(this the- | con- 2-socket TCP/QUIC-based lived session
sis) tainer proxy sessions handover

binaries running on the machines. In these scenarios, the services might be owned by third-party

clients, hindering the operator’s ability to enforce MPTCP adoption.

Harney et al. [ 109] utilize Mobile IPv6 to maintain the same IP address, thereby avoiding changes
to the DNS, but with a service disruption of 8 seconds (excluding downtime due to the service mi-
gration itself). A more recent work in the same direction, from Lemmi et al. [105], addresses IPv6
workload migration of an edge service that maintains the same IP address by redirecting IPv6 traf-

fic using SDN and state-of-the-art P4 network programmability [110] and the SRv6 protocol [111].
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Figure 3.3: 2-socket proxy redirection.

SRv6 follows the segment routing paradigm and adds a segment routing header (SRH) to the IPv6
header that allows to identify transit routers and dynamically performs IPv6 forwarding to migrate
the network. Lemmi et al. additionally implement a buffer mechanism to keep packets sent during
the CRIU container migration. Their results show the best position to initiate the buffer is at the
destination node, allowing a lossless traffic redirection, while the service downtime due to CRIUs
checkpoint/restore of their specific service is 3.28 seconds, which could be reduced by using an op-

timization method as described in Section 2.3.2.

Puliafito et al. [106] investigate stateless container-based service migration and its impact on the
QoS perceived by mobile devices, achieving network downtimes of five seconds (in the experiment,
10 frames are lost in a two FPS live stream fog service). The framework employs a white-box im-
plementation, where the connection handover occurs at the application level in the UE/end-device.
This is not feasible in scenarios of cloud service providers and telco operators who would prefer to
migrate resources as black boxes, independently of the application’s implementation and connected

clients.

All NAT-based techniques, such as Hole Punching [ 112], share the same issue of DNAT with TCP
and may expose the private IP address of the VNF when attempting to establish a direct connection.
By using SDN traffic redirection, packets are forwarded to the new instance, but they are dropped be-
cause they are not recognized as belonging to it. Binder et al. [ 107] demonstrated that the connection
canbe transferred to anew server by performing NFQUEUE packet manipulation: synchronizing the
TCP sequence number (TCP SEQ), congestion window, SYN/ACK numbers, and checksum values
of IP packet headers in the SDN switch at the time of packet forwarding. This “TCP state machine”
synchronization is performed by changing all packets directed to the service from the moment the

service is migrated until the connection of the client ends, which translates into an important SDN
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load and the QoS degradation that persists all along the connection life-cycle and is not limited to
the first traffic redirection.

Cunha et al. [ 108] introduce instead a 2-socket proxy to redirect live attack connections to a Hon-
eypot service. The proxy is introduced after the connection with the attacker is established using
the Linux kernel’s TCP_REPAIR feature, which is also employed by CRIU when checkpointing a
container runtime to save the container’s network state. This work demonstrates that the 2-socket
redirection process has a much lower impact on the traffic’s QoS and outperforms SDN TCP han-
dover and NFQUEUE packet mangling, with a continuous redirection latency overhead of only 0.03
ms. As depicted in Figure 3.3, the UE, as the client node, can only see the connection established with
the public IP of the VNF. The proxy receives packets to a specific binded port where the in_socket
is listening. The payload is then extracted and sent to the out _socket pipe. When the VNF moves,
a new connection is established using the out_socket and the payload is sent to the new server.
Nonetheless, their solution is proxying only one specific connection to a specific port (e.g., a web
server on port 80), which makes it inadequate for VNFs that have multiple ports open. Hence, the
proxy should be able to redirect trafhic with different destination ports simultaneously. Moreover, a
proxy node can only redirect the traffic to one VNF, as it configures its vNIC to use the VNF’s public
IP to receive client traffic. The solution proposed in this thesis, TopoFuzzer, employs the two-socket
proxy method, inspired by [ 108], and addresses the aforementioned issues of redirecting traffic to a
single port and a single VNF. Additionally, it introduces a traffic isolation concept using vNICs to

maintain network slice isolation.

3.4 SOTA oN ML-BASED MTD STRATEGY OPTIMIZATION

This section covers the works on MTD strategy optimization, with game theory-based (cf, Sec-
tion 3.4.1) and ML-based (cf, Section 3.4.2) approaches. The latter also reviews MORL as it is used
in the MTD optimization method developed in this thesis.

3.4.1 GAME THEORY APPROACHES

Optimization of MTD operations in network security scenarios is already attracting significant atten-
tion from research and industrial communities. In the past, game theory-based MTD optimization
strategies have been developed to counter various attack models in various environments, ranging
from Partially Observable Markov Decision Processes (POMDDP) in large-scale networks [113] to
general-sum Markov Games in cloud networks [114]. In the latter, Sengupta et al. use the attack

graph of a cloud network to formulate a general-sum Markov Game and to solve the Stackelberg
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equilibrium problem, shown to provide an optimal strategy for the placement of security resources
to protect cloud systems.
DEeP-RL AND MORL OPTIMIZATION

3.4.2

Table 3.4: Recent works and their scope on MTD optimization.

Edge-to- .
Environment | Approach | Deep-RL l;GC/} Cloud tiame ﬂ’[ ul:,l-
S Security eory o ]eC 1ve
Online Defense | Theoretical | POMDP v
Algorithm [113] | model
Markov  Game | Cloud General- v v
Model [114] testbed sum
Markov
Games
DQ-MOTAG | Cloud- DQN v v
[115] hosted web
app.
DESOLATER In-vehicle | Multi- v v v v
[116] network agent
with SDN | deep-RL
CyberBattleSim | Network MDP & |V v
[117] simulation | deep-RL
OptSEC  (this | sG testbed | MORL, v v v v v
thesis) FL

Research on AI/ML-optimized MTD is relatively recent, aligned with game-theoretical method-
ologies that have a more established historical foundation and remain a necessary component to
tackle the optimization problem with deep-RL. DQ-MOTAG [115] employs MTD IP shuflling to
mitigate ongoing Distributed DoS (DDoS) attacks on web servers, against DDoS attacks proposed
in [118], extending another MTD solution from the literature [ 118] and optimizing it with Deep Re-
inforcement Learning (DRL). It finds the original hidden malicious user giving up the server’s IP to
other active attacking hosts with a minimal number of shuffles using deep-RL. DESOLATER [116]
presents a multi-agent deep-RL method to train an MTD shuftling strategy of the IP address layout
in in-vehicle networks with SDN capabilities. Microsoft has also contributed to advancing this re-

search direction for local and enterprise networks by releasing the open-source research toolkit “Cy-
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berBattleSim” [117]. However, this toolkit does not allow the modeling of complex environments

like Edge-to-Cloud systems.
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Figure 3.4: Pareto front for three objectives showing the benefits of MO methods over
weighted sum optimization methods (Adapted from [119]).

Conventional deep-RL algorithms, however, are designed for single-objective optimization and
used with the scalarization of the different rewards corresponding to various objectives into a single
reward value. In that case, this scalarization can be part of the missing information we want to learn,
i.e, the best trade-off among objectives to maximize the overall return. If the optimization occurs
for only one fixed weighted sum, the result produced would be suboptimal, as other weight sums are
not explored. The scalarization can also depend on a user’s preference, which makes the weights a
variable that should be controlled. With legacy deep-RL, this is not possible unless a different model
is trained with new weights. Moreover, the single scalarized value can be semantically meaningless
as the multiple objectives are fundamentally different in nature. For instance, one objective can be to
reduce an economic cost metric, measured in a monetary unit, while another objective is to improve
proactive security, which may be measured in terms of the ASP reduction of a threat. Merging both
measures into a value that is difficult to interpret leads to decisions that are equally challenging to
explain/interpret, whereas the explainability of the deep-RL MTD policy is a critical requirement

for important technical and societal aspects, such as liability and resilience.
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MORL is a new category of RL algorithms that keeps different interpretable reward functions, one
for each objective, and iterates the optimization process on different weighted sums, avoiding sub-
optimal solutions and approximating the set of optimal policies for all scalarizations (see Figure 3.4.).
This solution set is defined as the coverage set (CS), which, for monotonically increasing reward func-
tions, is reduced to the Pareto Front (PF) [120]. PF is the set of undominated solutions, where each
solution is optimal with respect to a specific scalarization. MORL’s interactions to retrieve the PF oc-
cur with a multi-objective MDP (MOMDP), where the main difference with respect to the MDP’s
definition is that R is now a vector R comprising the reward values of the multiple objectives defined
in the model. These objectives do not always align with one another, as optimizing one objective
may be done at the expense of others. In the scenario of MTD operations in the edge-to-cloud con-
tinuum, moving a resource to a closer node may improve latency, but it may also weaken security
since its position becomes predictable to attackers. Conversely, a completely random move aimed at
enhancing security could negatively affect the network and service performance. Therefore, in con-
trast to legacy deep-RL models, MORL allows one to learn the optimal trade-offs and enables the

user to set his own preferences in terms of objective prioritization.

3.5 SOTA ON FEDERATED MTD ORCHESTRATION

While MTD has been used to secure FL training against poisoning attacks and model inversion at-
tacks, especially in distributed FL setups [ 121-123 ], the use of FL to optimize MTD operations made
to shuffle cloud-native environments has not been studied yet. Nonetheless, FL has commonly been
used in telecommunication networks and edge computing, particularly for applications in anomaly
detection, resource allocation, and edge computation offloading. In the area of anomaly detection,
Sahu et al. [124] employ a CNN-LSTM combined model for identifying cyberattacks. A CNN ex-
tracts complex data features, while an LSTM classifies them by identifying temporal patterns vital for
intrusion detection, improving the detection of cyber-attacks. As NN-based models rely heavily on
large datasets, often containing sensitive and private information, FL. models have been introduced to
improve confidentiality, enabling decentralized cyber-attack detection across edge-computing (EC)
networks without requiring direct data sharing. This FL-based approach preserves data confiden-
tiality while maintaining robust accuracy in distributed cyber-attack detection. Abeshu et al. [125]
introduced a distributed deep learning approach for cyber-attack detection in fog-computing envi-

ronments. This scheme was evaluated based on key performance metrics, including accuracy, detec-
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Table 3.5: Works on FL and 5G/B5G management optimization.

Papers EnvironmentMethod Use Case

Beltran et | MEC/IoT | DFL,MTD | Mitigating communication-based security threats

al. [101] in DFL: eavesdropping, Man-in-the-middle, net-
work mapping, and eclipse attacks.

Feng et | generic DFL, MTD | Mitigate poisoning attacks in DFL.

al.[122] networks

Zhou et | IoRT Cross-silo Preserve privacy & integrity in cross-silo IoRT (re-

al. [123] FL, MTD sist poisoning).

Wang et al. | MEC/Edge | FL + Deep- | Joint optimization of MEC: caching, offloading,

[126] RL and communication.

Abeshu et | Fog/IoT CNN Distributed attack detection in fog-to-things / IoT.

al. [125]

Qietal.[127] | Wireless FL Local popularity prediction for proactive caching at

edge wireless edge.
Han et | Edge/IoT FL + Deep- | Offloading optimization for IoT-edge.
al.[128] RL

tion rate, and scalability, to assess the model’s effectiveness in identifying attacks across decentralized

networks.

In MEC environments, Deep-RL has become a preferred centralized ML approach for optimizing
resource allocation and computation offloading policies, as seen in various studies [129-132]. FL
has been leveraged to further decentralize the decision-making and increase confidential data sharing
among parties. For instance, to optimize content caching and task offloading strategies, FL aids in
determining whether to cache specific content, as well as identifying the optimal timing and methods
for offloading computations. These decisions play a crucial role in maximizing the efliciency of both
communication and edge computation, influencing services and system performance in terms of QoS
and QoE. Agents in constrained edge nodes assess whether to replace local content based on the
learned popularity trends derived from the distribution of content requests. This popularity reflects
shared user interests across different edge nodes and operators involved in the FL process, enabling

more informed and synchronized caching decisions [126, 127, 133 ].

Deep-RL has been used in MEC-based telecommunication networks for context-aware computa-
tion oftloading to find the optimal trade-off between energy consumption, execution cost, network
usage, and fairness, and FL is applied on distributed deep-RL agents to reduce the network load
and transmission costs between agents [126, 128, 134]. Wang et al. provide one of the first stud-

ies coupling Deep-RL with FL in MEC networks to optimize both edge caching and edge computa-
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tion [126]. These methods see a great potential in optimizing MTD proactive strategies in 5G/BsG
networks with similar MEC setups, and to the best the author’s knowledge, this thesis is the first to
tackle such multi-objective optimization problem using both MORL and FL.

3.6 KEY FINDINGS AND TAKEAWAYS

This chapter reviews the related works and literature underpinning the various solutions designed and
proposed in this thesis. The first section (i.e., Section 3.1) covers MTD techniques focused on traffic
redirection and dynamic endpoint reconfiguration, including IP and port shuffling. These methods
are later termed “soft-MTD” operations, as they affect only network interfaces, socket configurations,
and packet redirection, without impacting service instances or the underlying infrastructure. In con-
trast, the second section (Section 3.2) discusses more pervasive techniques, which will be referred
to as “hard-MTD” operations, specifically LiMi of VMs and containers. This section highlights the
growing significance of container LiMi and introduces optimization algorithms designed for various
container types and service requirements. It is observed that there is no one-fits-all optimal algo-
rithm, making it necessary to have a solution that dynamically selects the suitable algorithm according
to the container type, especially in microservices applications where interdependent containers be-
longing to one service migrate in parallel. The ContMTD framework developed in this thesis presents
such a solution in the subsequent chapters. The discussion on LiMi continues in the following sec-
tion (Section 3.3), focusing on the challenge of maintaining traffic continuity during migrations, es-
pecially with session-based protocols like TCP. Various solutions have been explored, yet difficulties
remain when a service’s IP address or port changes mid-session. The TopoFuzzer solution developed
in this thesis addresses this technical challenge directly.

Section 3.4 addresses the optimization of decision-making problems, covering studies using game
theory approaches and later derivatives using RL and deep-RL, having as a common denominator
the modeling of the network into an MDP. The challenge of balancing multiple objectives is identi-
fied, leading to the literature study of recent MOMDP and MORL algorithms, which, to the best of
the author’s knowledge, have never been applied in decision-making optimization problems regard-
ing §G/BsG orchestration, in general, and security and MTD-based strategies, specifically. Finally,
Section 3.5 gives a brief SOTA literature review of the application of FL in §G/BsG networks, espe-
cially in MEC settings where multi-party edge distributed computing requires it for a multitude of

use cases, including, in this case, the optimization of MTD strategies.
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The MERLINS Approach

HIS chapter presents MERLINS, the MTD-centered approach proposed in this thesis. The MER-
T LINS methodology, HLA, and the solutions implementing its various components are the core
contributions of this thesis, presenting novel preliminary results that advance research towards the
practical mainstream adoption and improvement of MTD as an additional security layer in sG/BsG
networks. MERLINS HLA is designed following a systems design approach centered on iterative
development principles to simplify the definition of a continuous and autonomous MTD security
system. This methodology defines the end-to-end process for monitoring and executing MTD oper-
ations within 5G/BsG networks, adhering to the ETSI ZSM standard [135] by leveraging a closed-
loop approach to automate security management and orchestration.

This enables continuous improvement and dynamic adaptation of MERLINS MTD strategies in
response to evolving network conditions and threats.
Depicted in Figure 4.1, the MERLINS methodology is composed of four cyclic phases, listed as

follows:

« (A)Integration to the sG/BsG network: This phase consists of an initial setup that occurs only
in the first loop of the cycle to define the way the communication with the §G/BsG network
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Figure 4.1: The 4-phases methodology for cognitive MTD orchestration in 5G/B5G applied in
the MERLINS HLA.

occurs. Then, an infrastructure synchronization is permanently running, involving passive and
active interactions with the network. The passive interactions are the consistent and real-time
observation and monitoring of the network, while the active interactions consist of the ability
to operate on the network components, i.e., the VNFs and VIMs of the different domains in
the edge-to-cloud continuum, spanning from the multiple edge clusters or nodes to the core

network.

. Network assessment and decision making: Using the data obtained from the passive in-
teractions and monitoring in the previous phase, this phase focuses on analyzing data, such
as performing performance evaluations, resource consumption analysis, and security evalua-
tions, to assess risks or detect attacks. This analysis then results in a decision on whether to

enforce an MTD operation or not.

. @ MTD management/orchestration: In the advent of the decision to perform an MTD op-
eration, this phase goes through the validation process, analyzing whether the operation can
be performed, with respect to technical feasibility, i.e., if the operation can be implemented
on the specified target, and policy-based feasibility, i.e., if there is no other orchestrator with a

conflicting policy and a higher hierarchical priority.
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. @ MTD enforcement: At the validation of an MTD operation, this phase enforces and im-
plements the MTD operation on the 5G network, also using the active interactions available

in Phase (A), transitioning to this phase for the next iteration of the cyclic methodology.

The remainder of this chapter is organized as follows: Section 4.1 introduces the MERLINS HLA,
its layers, and its components. Subsequent sections present the solutions designed and implemented
to represent such components of the MERLINS HLA, in the following order: the MTD Controller
(MOTDEC), the container MTD framework (ContMTD), the network topology fuzzer (Topo-
Fuzzer), the security function optimizer (OptSFC), and the MTD federated framework (MTDFed).

4.1  MERLINS HiGH-LEVEL ARCHITECTURE

MERLINS HLA covers the four phases defined in the methodology depicted in Figure 4.1, using a
three-layer structure as presented in Figure 4.2. Each layer of MERLINS has components tasked with

different operations defined as follows:

1. The Management and Orchestration Layer (MOL): This layer is responsible for the operations
of phases A and C of the MERLINS methodology (i.c., the integration to the sG network and
the MTD management and orchestration). As MERLINS has to evaluate and enforce proac-
tive and reactive MTD actions in a telecommunication network, a proper interface has to be
defined with the latter to obtain the configuration of the telecommunication infrastructure,
in our case, a 5G infrastructure, and to subsequently operate in its domains, i.e., both in the
core and the edge domains. To do so, a northbound interface (NBI) with the NFV Orches-
trator and network slice manager is necessary. From the NBI, MERLINS MOL also collects
various data for the real-time monitoring of the network, necessary for the next MERLINS
layer to evaluate the attack surface and ASP on NFs to be protected (whether VNFs or CNFs),
for proactive MTD operations. Moreover, the monitoring component should also be able to
collect anomaly detection and attack detection alerts from other security sources, enabling re-
active protection. The MOL also acts as the central system to orchestrate MERLINS MTD op-
erations through an MTD controller, interfacing the enforcement layer with the 5G network’s
VIMs and NFVIs. Finally, the MOL is designed to enable federated cooperation among peer
controllers distributed in various edge nodes, in the scenario of different MERLINS instances
owned by network slices or virtual operators who want to improve the effectiveness of their

MTD framework collectively.
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Figure 4.2: MERLINS HLA and the mapping of its layers with the phases of the methodology.

2. The Decision-Making Layer (DML): The DML is responsible for the operations of Phase B of
the MERLINS methodology (i.., the network state assessment and decision making). As the
name indicates, this layer performs all operations required to make informative and automated
decisions on which MTD actions to perform and, in the mid-long term, what MTD strategy to
follow. These operations, identified by the DML's components, include: network state mod-
eling, threat and risk analysis, multi-objective optimization, and decision explainability. The
network state modeling is necessary to make a correct interpretation of the G network state

using the raw data obtained by the monitoring operation performed in the MOL.

The threat and risk analysis follows, augmenting and deducing additional metadata based on

the raw data. This is equivalent to threat intelligence extracted from vulnerability scanner re-
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ports, as well as anomaly and attack detection alerts obtained from detection systems. Such
data is then adapted to be integrated into the network state model or used to decide on direct

mitigation actions.

The multi-objective optimization operation is required to balance and find the trade-off be-
tween various objectives when deciding on the MTD operations to perform, such as opti-
mizing latency and QoS, increasing the entropy of MTD actions for security, or reducing the

resource consumption and operational costs of the protected NFs.

The decision explainability is the last component identified in the DML, as MTD decisions
affect critical infrastructures and multi-tenant services running in them, thus requiring some
levels of robustness, which can be gained when decisions are humanly explainable, and liability,

which necessitates motives of why certain operations were made in the network.

3. The Enforcement Layer (EL): The EL is responsible for Phase D of the MERLINS methodology,
i.e., the enforcement of MTD actions. After the decision on which MTD action to perform is
made by the DML, the EL implements the action’s mechanisms and executes them on the
targeted 5G resources. Such MTD actions are identified as three main operations: VM migra-
tion (targeting VNFs), container migration (targeting CNFs), and network reconfiguration
(targeting network interfaces, network routing, and network topologies). The MTD enforce-
ment occurs with the coordination of the MTD controller, from the MOL, which coordinates
operations imparted to the involved NFs, network slices, NFVIs, and VIM:s for the successful

execution of the MTD action.

MERLINS HLA intends to consider any feature necessary to the execution of MTD operations
during the network’s life-cycle, and it could be extended to accommodate specific features: e.g,, based
on the requirements of new MTD operations in the EL, or changes in the modeling of the network
state in the DML. Nonetheless, being a high-level architecture, MERLINS is agnostic of the technolo-
gies and methods used to fulfill each of the operations defined in its layers and components. This
thesis delivers the design and implementation of a suite of solutions that represent an implemented
instance of the MERLINS HLA to demonstrate its feasibility and its contributions to securing current
and future Telco Cloud networks, such as §G and B5G systems.

MERLINS solutions are used to tackle various threat scenarios, proactively and reactively, based
on the MTD operations implemented. For instance, stateless LiMi and reinstantiation actions im-
plemented in the MTD Controller (MOTDEC) are used for proactive defense against undetected
intrusion and malware infection, IP and port shuffling implemented in MOTDEC tackle reconnais-

sance and fingerprinting attacks, while stateful LiMi implemented in ContMTD is used to reduce
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Table 4.1: Solutions developed as part of the implementation of MERLINS HLA.

Solution Description Phase Addressed of | Layers ofthe HLA
the Methodology Implemented
MOTDEC | An MTD controller and stateless | Phase A, C,and D Layer 1, Layer 3
[30,136] VNF migration orchestrator
ContMTD | An orchestrator for stateful con- | Phase Cand D Layer 1, Layer 3
[33,137] tainer LiMi
TopoFuzzer | A networking solution forlive TCP | Phase D Layer 3
[138] and QUIC session handover
OptSEC A MOMDP and deep-RL based | Phase B Layer 2
[27,136] decision-making optimizer for
MTD strategies
MTDFed A secure and privacy-aware FL ap- | Phase A and B Layer 1, Layer 2
proach for peer-to-peer OptSFC
agents

and disrupt data exfiltration rate and lateral movement to sensitive CNFs. These mechanisms do
not operate in isolation; instead, they can be sequenced or combined: for instance, a reactive shuf-
fling of ports after an intrusion detection can immediately cut off an attacker’s reverse shell, while a
subsequent stateful migration of the compromised service to a sanitized node ensures operational
continuity and isolates the threat. The framework is designed for extensibility, allowing new MTD
techniques such as instruction set randomization for binaries or dynamic application topology mu-
tation to be integrated as new components in the EL and added to the MTD catalog for the MOL
and DML. This flexibility enables MERLINS to extend to novel attack vectors, but it also introduces
challenges to consider, such as the potential for conflicting actions (e.g,, a migration triggered during
active shuflling). Effectively keeping new MTD strategies operationally stable is one of the central
tasks of the MERLINS HLA and the designed closed-loop methodology.

Table 4.1 presents a comprehensive overview of the developed solutions, highlighting the phases
of the methodology they address and the components of the MERLINS HLA they implement. As
shown, each phase of the methodology (Figure 4.1) and every component of the HLA (Figure 4.2) is
addressed by at least one solution, except for the decision’s explainability component, which has been
added to the HLA for sake of completeness, but has not been addressed in this thesis as it is out of
scope and not considered in the research questions defined in Section 1. It is important to note that
these solutions are not intended to serve as a definitive approach to achieving cognitive MTD-based

security for Telco Cloud networks. Rather, they offer a foundational framework and valuable insights
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Figure 4.3: MOTDEC architecture.

for enhancing Telco Cloud security through MTD. The following sections will describe each solution

individually, providing details of their design, architecture, functionalities, and implementation.

4.2 MOTDEC - AN MTD CONTROLLER

The MOTDEC framework provides an implementation of the components in the HLA's MOL, namely
the NBI with the telecommunication network, the infrastructure configuration, the monitoring, and
the MTD controller. MOTDEC targets implementing the fundamental operations of the MOL and
tackles the research question RQ1: ‘Which MTD actions can be taken on a §G network and against

which attack scenarios, considering the security properties they offer?.

4.2.1 MOTDEC’s ARCHITECTURE

As depicted in Figure 4.3, MOTDECs architecture is designed and implemented to be interfaced
with the standardized NFV architecture used in §G and B5G networks and is mainly formed of two
modules: a monitoring module, which synchronizes its information from the network in order to
keep a history and a near-real-time observation of the §G network, and an MTD controller, which
enforces the various MTD actions implemented in the framework. The following sections describe
MOTDEC’s formal positioning with respect to the NVF standard architecture (Section 4.2.2), MOT-
DEC’s interface and monitoring module (Section 4.2.3), and MOTDEC’s MTD controller and its
implemented MTD actions (Section 4.2.4).
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4.2.2 MOTDEC PrROPOSED INTEGRATION TO THE NFV STANDARD

MOTDEC uses the NFV standard architecture as a reference point to interface itself with the sG/BsG
telecommunication networks. Thus, a detailed study of the standards is necessary, as presented in the
earlier foundational chapter of this thesis (Chapter 2). When considering telecommunications stan-
dards, the ETSI NFV standards group defines a candidate architecture that could integrate MTD in
5G and Beyond 5G networks. The ISG is currently working on improving the security of such ar-
chitecture, with additional components like the OSS/BSS security managers (OSSM), NFV Security
Managers (SM), and Security Agents (SA). These elements are defined by the ETSI GS NFV-SEC 024,
which is still an early draft and has yet to be a Harmonized Standard. MTD could be effectively inte-
grated into this architecture, as depicted in Figure 4.4. The additional elements being defined by the
NFV-SEC o024 draft are represented in blue in that figure.

In such integration, MOTDEC would be placed as an OSS/BSS security manager, having a higher-
level view and control of the NFV infrastructure. The soft MTD actions modifying the virtual net-
work in the cloud environment, or the data plane flow in the Network Hardware would be performed
at the NFVI layer, with the help ofits SDN controllers and the VIM. Hard MTD actions, such as mov-
ing single VNFs or whole network services from one NFV infrastructure to another, are performed at
the EMS and VNF layers. These MTD “playgrounds” are highlighted in the figure with pink clouds. A
network service provider can improve MTD eftects by using VIMs that control a diverse set of NFVIs,
combining both shuffle and diversity schemes at the cloud level. The cognitive decision-making com-
ponent, such as the OptSFC solution, is placed as an NFV security manager which uses, among other
data, the monitoring data collected by MOTDEC to make its informative and optimal decisions (e.g.
using ML/AI) on which MTD action to take. Finally, the decisions of OptSFC are communicated
to MOTDEC, which enforces them on the §G/BsG network by coordinating its operations with the
NFV MANO, the network slice manager, and monitoring probes used to verify the network’s state
throughout the execution of the MTD action.

4.2.3 MOTDEC’s MONITORING MODULE

As depicted in Figure 4.5, the monitoring module of MOTDEC mainly collects data regarding the in-
frastructure’s configuration from the network slice manager and the NFV MANO component. The
module periodically retrieves the catalog of network resources, core and edge domains, and updates
the entities in a relational database management system (RDBMS). The NFV MANO and the net-

work slice manager also deliver other information about the life cycle of the network resources, like
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Figure 4.4: Monitoring process for the MERLINS MDP modeling.

the virtualization deployment units (VDUs) (i.e., the individual VMs or containers that are running
the NFs), their minimum resource requirements, their location and hosting VIM, their layout and
links to VNFs, their belonging to different NSs, and their split among network slices. MOTDEC con-
tinuously collects such information periodically and permanently in another database other than the
RDBMS, specifically, a file-based database using JSON-formatted files. The two databases are com-
plementary: a relational database for querying currently available network resources, and a JSON-
based archive that logs all historical changes, thus decoupling real-time operation from historical
record-keeping.

The monitoring module also receives additional statistical data from network probes installed in
the infrastructure to track the influx of packets in and out of the various network interfaces. This in-
formation is used to keep the MOTDEC framework capable of performing the various MTD actions,
while it can also deliver its data to external security agents such as detection systems and the other
MERLINS solutions like OptSFC, which requires such information for decision-making and MTD
strategy optimization. In the case of anomaly detection systems, MOTDEC’s monitoring could also

receive alerts back and integrate them into its observation of the §G network state.

4.2.4 MOTDEC’s MTD CONTROLLER

The MTD Controller module enforces MTD actions grouped into two distinct categories: soft MTD
actions, and hard MTD actions. The first category is named “soft” as its operations are software-defined
network configurations that necessitate minimal resources and are very fast to execute. Conversely,

“hard” actions are characterized by higher resource consumption, extended completion time, and
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Figure 4.5: Monitoring process for the MERLINS MDP modeling.

ultimately a more significant overhead on service availability. The two categories are further defined

as follows:

« Soft MTD actions: These are SDN-based shuflle operations performed on network inter-
faces, traffic flow, and network topology on both the internal and the external/public views
of the network. In the internal view, the MTD controller could prevent an attacker inside the
network slice from easily exploring and further penetrating it. In the external/public view, the
resource is meant to be always accessible by external devices with a public interface. The MTD
controller provides a different public IP address to suspicious end-users or UEs, allowing fur-
ther targeted traffic analysis and adding a second layer of security through proxy VNFs. To this
scope, the MTD controller integrates an SDN controller (i.e., ONOS in NFV MANO case)
to shuffle IP addresses, as detailed later (c.f, Section 4.2.5), in the IPv6-based soft MTD ac-
tion implementation. Another solution proposed in this thesis, TopoFuzzer, is also used to
enhance soft MTD actions by changing node links and network data flows, further increasing

the difficulty for attackers to identify the network’s topology.
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« Hard MTD actions: These are operations directly performed on the NFV assets used in the
network infrastructure, for both assets allocated by the operator’s clients and assets deployed
by the operator to provide and manage their services. There are two hard MTD actions im-
plemented in MOTDEC: 1) MTD restart action: the MTD controller restarts the NSs or NFs
by re-instantiating the resource starting from verified images. This mitigates security scenar-
ios of attackers introducing themselves in the virtual units to eavesdrop and acquire sensitive
data, block the application running on the unit (resulting in a DoS$ attack), encrypt the unit
with ransomware, or create a C&C bot and exploit it as a vector for other chained attacks. The
new instance of the service replaces the old one, expelling the intruder from the logic (and
physical) resource. 2) MTD cloud diversity action: the MTD controller moves the protected
resource from one VIM to another with a different cloud execution environment. This action
changes the environment of the running resource and reduces the threats due to different pe-
culiar system’s attack surface. In practice, this action is similar to the MTD restart action, but
performs a LiMi of the VNF by creating a new resource instance in a different VIM than the
previous one. Thus, in addition to the MTD diversity effect, it also mitigates the same threats

the MTD restart action addresses.

4.2.5 MOTDEC IMPLEMENTATION

This section further delves into the specific implementation of MOTDEC and the MTD controller’s
soft and hard MTD actions, specifically, the IPv6-based IP shuffling mechanisms and the implemen-
tation of stateless LiMi and instantiation. Itis noteworthy that other implemented MTD actions, such
as those in ContMTD and TopoFuzzer solutions within the context of this thesis, also contribute to
expanding the portfolio of MTD actions that the MERLINS framework can execute, encompassing
both soft and hard MTD action categories. Moreover, other MTD actions can be implemented and
integrated in the future to extend MERLINS capabilities.

SorT MTD AcTtioN: SDN-BASED IPV6 SHUFFLING

MOTDEC:s soft MTD action implements the shuffling of ports and IP addresses of VNFs in the
IPv6 address range, proactively mitigating network reconnaissance and fingerprinting attacks [139].
This implementation divides IP shuffling and port shuffling into two independent components: IP
Shuffling masks the real IPv6 address of protected VNFs with a virtual IPv6 address that changes in

a set interval (i.e., all communication addressing the actual address is dropped to force the use of the
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Figure 4.6: MOTDEC's soft MTD action workflow.

virtual address); Port Shuffling switches the protocol header of packets in a fixed interval to mask the
protocol used by an application.

Figure 4.6 shows a typical UDP packet flow with Host 4 (H4) addressing the protected Host 1
(H1):

1. H4 sends a UDP request with the destination IP as the virtual IP of H1 and with the destination
port of the virtual port of Hi.

2. The destination address and port are switched from the virtual IP and port of H1 to the real IP
and port of H1 by the switch S1.

3. Hi1 sends a UDP response with its real IP and port as the source IP and port to H4.

4. The source IP and port are switched from the real IP and port of H1 to the virtual IP and port
of H1 by the switch S1.

Algorithm 1 shows how the MTD controller handles unknown packets. MOTDEC’s soft MTD
action is implemented in Python and uses the Python-based Ryu as the SDN controller.

HARD MTD ACTION: STATELESS VNF MIGRATION AND REINSTANTIATION

MOTDEC implements hard MTD actions for stateless VNFs, in other words, for those services that
do not require a checkpoint and transfer of the last occurring state when migrated. This approach
differs from stateful VNFs, which are explored in the context of container-based services in the Con-
tMTD solution further proposed in this thesis. The LiMi and live reinstantiation of stateless VNF
services implemented by MOTDEC are conducted in four steps:
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Algorithm 1 Packet Handling for Shuffling

1:

2:
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Require: packet.type = TCP|UDP|ICMP

hdr = pkt.hdr

if hdr.dst.ip in getReallPs() or hdr.dst.port in getRealPorts() then
drop packet

end if

if hdr.dst.ip in getVirtIPs() then
hdr.dst.ip = getRealIP(hdr.dst.ip)

end if

if hdr.src.ip in getReallPs() then
hdr.src.ip = getVirtIP(hdr.src.ip)

end if

if hdr.dst.port in getVirtPorts() then
hdr.dst.port = getRealPort(hdr.dst.port)

end if

if hdr.src.port in getRealPorts() then
hdr.src.port = getVirtPort(hdr.src.port)

end if

addFlow(pkt)

ticated image in Step 1, removing from the service any post-instantiation infection and APTs origi-
nating from malware (e.g, installed backdoors, spyware, botnet command and control (C&C), ran-
somware, or other hijack services). Moreover, a service can increase the fault tolerance to its host by

migrating the VNF to a different edge node in case the current node is under attack or simply under

(either in the same location or in a different one if it is a migration.)

undergoing, the service is available through the old instance. In order to keep both instances

in the same network, a new IP is assigned to the new instance.

new one in a transparent way, i.e., connected clients should not notice that they moved to a

new instance.

freed.

The advantages of hard MTD actions for stateless VNFs rely mainly on the usage of an authen-
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. A new instance of the VNF is re-initiated with an authenticated image in the chosen location

The MTD Controller waits for the availability of the new instance. While this transition is still

. When the new instance is ready, the traffic should be redirected from the old instance to the

Once all traffic is redirected, the old VNF instance is terminated and the related resources are



maintenance. Another worth-noting aspect of hard MTD actions for stateless VNFs is that old in-
stances stay employed until the new ones are operational. This allows MTD restart actions to have as
little QoS/QoE overhead over the communication performances as the soft MTD actions, since the
only moment where communications get interrupted is the reconfiguration of the network links and
traffic routing.

For the MTD cloud diversity action, the same argument is valid. However, there is an additional
QoS/QoE overhead if the new cloud infrastructure is more distant or has worse network perfor-
mance. For inverse reasons, MTD cloud diversity action could instead improve the communication
performance of the protected service by decreasing the physical distance of the service to the UEs, or
if the new destination VIM has better network performance. This is a motivation to explore efficient
cognitive systems that would strike a trade-off between performance optimization and MTD secu-
rity efficacy. Finally, there are other concerns with hard MTD actions for stateless VNFs in terms
of resource consumption and operational costs. They may take a considerable time to complete the
instantiation of the new instance. This may take several minutes depending on: i) infrastructure ca-
pabilities, ii) whether the NF is a VM or a container, and iii) the size of the VNF/CNF image. During
this time, the resources allocated for the VNF are doubled, generating a financial operational cost for
hard MTD actions.

MOTDEC is implemented in Python using the Django framework. The monitoring module is
implemented with interfaces to Katana and OSM, which are, respectively, the network slice manager
and the NFV MANO used in the 5G testbed implemented in this thesis (Section 5.1). The moni-
toring data collected on VNFs is accessible both from a REST API interface, implemented with the
Django REST API framework, and a web graphic user interface (GUI) as illustrated in the screenshot
in Figure 4.7.

Finally, the Katana slice manager [ 140] is also directly interfaced with the underneath OpenStack
NFVI, enabling the implementation of hard MTD actions (i.e., stateless LiMi and reinstantiation) at

the NFVI level and its enforcement from the slice manager’s interface.

4.3 CONTMTD - L1vE MIGRATION OF MICROSERVICES-BASED NFs

The ContMTD solution extends MERLINS portfolio of hard MTD actions, addresses the LiMi of
containerized stateful services, further answering RQ1 and partly RQ2 ‘How can we minimize the net-
work and resource overhead associated with MTD operations to ensure system performance and scalability?

as it partially handles the efficiency issue of stateful service live migration (LiMi) with the usage of
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Figure 4.7: MOTDEC Web GUI.

containers over VMs. Existing research and solutions address the challenge of migrating multiple
containers or VMs composing a single application simultaneously. This is especially relevant in to-
day’s microservices-based software architectures, as future BsG and 6G networks also move towards
the usage of CNFs and cloud-native orchestration technologies. In fact, the work in this thesis takes
into account this evolution towards Telco Clouds, since MOTDECs stateless VNF migration and
reinstantiation can be easily applied to CNFs as well, e.g,, via pod replica management in Kubernetes.
On the other hand, ContMTD focuses on CNF LiMi, as VNF LiMi alone has comparatively more

limitations for stateful services, some of which are:

« Image size: CNFs are lightweight, thus, they have faster checkpoint and migration phases with
a lower network bandwidth and latency footprint compared to VNFs.

« VM-centric migration: Some approaches often assume containers of the same service reside on
a single VM, enabling the LiMi of the entire host VM [ 141]. But this is not applicable when a

service is scattered across different clusters or VM cluster nodes.

« Heterogeneous microservices load: Other studies do explore parallel individual container mi-
gration, but they employ the same LiMi method to all containers [56]. This approach fails
to consider the diverse nature and resource demands of each container. In fact, those can be
memory-intensive, CPU-intensive, network-intensive (i.e., high 1/0), or disk-intensive (i.e.,

high R/W).
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4.3.1 CONTMTD’s ARCHITECTURE

As there is a lack of a one-size-fits-all optimal LiMi method for all types of load, a dynamic approach
that tailors the migration algorithm to the specific container type is necessary. For instance, microser-
vices commonly utilize standalone containers for caches and dictionaries in in-memory data struc-
tures (e.g,, Redis and Memcached). Such a container with a high dirty memory page rate can benefit
from a simpler cold migration approach without pre-copy or post-copy optimization methods. An-
other container could have a relatively small state, for which a post-copy migration strategy might

incur lower QoS overhead compared to pre-copy alternatives.

ContMTD

MTD—= LiMi controller ML module
policy
LiMi client
LiMi classifier
Microservices
IS _ parallel LiMi
L2 bridge scheduler
container ---------------mmmmmmm-mmo-mmd
categorizer

Figure 4.8: ContMTD architecture.

The ContMTD framework evolves around the nodes of a cloud infrastructure, whether such nodes
are edge nodes or core datacenter nodes. The modules depicted in Figure 4.8 compose the frame-
work’s architecture and consist of the following: the microservices monitoring module, the container
load categorizer, the LiMi controller, the ML module, and the MTD policy. The first two modules
(colored in red and yellow in the figure) form the initial data-gathering on the running microservices
and the classification of containers based on their resource consumption. The ML module (in vio-
let) deals with two tasks: 1) deciding the optimal LiMi migration method for individual containers,
performed by the LiMi classifier, and 2) estimating the migration time of the various containers, nec-
essary to improve the scheduling of multi-container microservices migration. The MTD policy is the
decision engine selecting which microservices application or which individual container to migrate,

while the LiMi controller enforces the migration, using the LiMi clients and servers running in the
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cloud nodes (in inter-cluster and multi-cluster migrations). The LiMi controller also uses a layer 2
network bridge mechanism to transfer traffic without disrupting existing sessions running on TCP.

The remainder of this section further details the novel solutions proposed in ContMTD.

4.3.2 PARALLEL MIGRATION OF MICROSERVICES

As the literature reveals the lack of a one-size-fits-all optimal LiMi method for all types of container
loads, ContMTD employs a dynamic approach that tailors the migration algorithm to the specific
container type during parallel container migration, enabling the efficient mixed use of optimization
techniques to transfer a full set of app-related microservices.

ContMTD categorizes each container based on four metrics: CPU load, memory load (i.e., high
memory dirty-page rate), storage load (i.e.,, high disk r/w operations), and network load (i.e., high
packet throughput). For each metric, to simplify the categorization, the resource consumption is set
to three intensity levels: low, medium, and high. These levels cannot be objectively determined as
they depend on individual use case requirements, but are estimated based on typical resource de-
mands observed, such as cloud instance offerings from major providers like AWS [ 142], and consid-
ering a median container-based organization hosts approximately eight containers per host, [143].
Thus, the following thresholds were used: 40%, 65%, and 100% for CPU load; 150MB, 240MB, and
1.25GB for memory load; 10MB/s and 200 IOPS, s0MB/s and 500 IOPS, and 150MB/s and 1500
IOPS for storage load; and 100 req/s, 1000 req/s, and 5000 req/s for network load. For the network
load metric, an additional intensity level is added, which is the “very low” and aimed at including pri-
vate computational container applications or idle applications with very low to absent network traf-
fic. Given this categorization, the categorization space of a container is 3( CPU) - 3(RAM) - 3(disk) -
4(network) = 108. However, some combinations are impossible to have in practice, reducing the
possible combinations to 34 (detailed in Section 4.3.5). This categorization is then used to experi-
ment with the performance of all LiMi methods on all the possible categories of containers, which is
used to form the dataset used to train an ML classifier. ContMTD then leverages the LiMi classifier
(of the ML module) to employ the predicted best LiMi method for the container.

The dataset is also used to learn a regression model to predict the total migration time of a specific
container category. This prediction is used to align the parallel LiMi of containers so that all con-
tainers related to the same microservices application are restored at the destination node simultane-
ously. This is to prevent application-level errors that would occur if one restored container attempts
to communicate with a container that is still being migrated. The details on the models trained from

the dataset and the LiMi optimization workflow of ContMTD are presented in Section 4.3.3.
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Figure 4.9: The migration optimization workflow of ContMTD.

4.3.3 ML MoDULE AND OPTIMIZATION WORKFLOW

The ML module is designed to take as input the category of the containers to be migrated, and send
to the controller the schedule that defines, for each container, the migration method and the time to
which the migration should occur. To this end, ContMTD follows a workflow of four steps, visual-
ized in Figure 4.9 and defined as follows: (1) The containers to be migrated are monitored and cat-
egorized based on the resource metrics, fed to the method selector logic; (2) The migration method
selector subsystem can be implemented in two different ways: (2a) An ML regressor model is trained
to estimate the downtime of the migration given the container’s properties for each of the four LiMi
methods, and feed them to a min-max classifier, which selects the method with the lowest downtime;
A classifier directly determines the best method given the category of the container, such as the
heuristic model proposed in ContMTD. This approach does not require a regression model and pro-
vides faster decisions, as explained in Section 4.3.5; After the method is decided, (3) A second re-
gression model predicts the total migration time of the given container and the migration method;
Finally, (4) A scheduling algorithm calculates the time at which each container should be migrated in

order for them to be restored simultaneously, thus providing the order of the migrations.

78



4.3.4 MITIGATING MALWARE MIGRATION IN STATEFUL LIMI

To restore the important security properties of stateless LiMi when migrating stateful services, Con-
tMTD uses the microservices architecture and best practices in cloud-native software development.
One such practice is decomposing services into multiple microservices, maximizing the number of
stateless components while minimizing the stateful ones, which can be deployed in more isolated en-
vironments, such as bare-metal or VM-based servers. The term “stateless-ification” is introduced to

describe this process.

Figure 4.11 illustrates a use-case scenario of a generic web service following this microservices
process. The service includes a front-end GUI, a REST API gateway, an authentication system, a user
manager, and a messaging service, all provided as stateless containers. Meanwhile, the databases,
in-memory caches, and other service functionalities are provided as stateful applications. The red
containers are particularly exposed to potential security threats, given their reception of requests from
external users/devices. Orange containers signify a diminished risk profile, whereas those in green

exhibit the minimal risk to security threats given the required attack chain to reach them.

ContMTD proposes an MTD security policy that restricts access to stateful microservices through
stateless ones. This configuration ensures that to compromise a stateful container, attackers must first
breach the stateless container. This setup enables more frequent and seamless stateless LiMis for con-
tainers at the service’s forefront, which are less critical but more vulnerable to attacks and undetected
infections, akin to a buffer security zone. By frequently migrating these potentially exposed state-
less containers, the system effectively “cleans” the service’s attack surface from malware and APTs,
significantly reducing the likelihood of attackers penetrating deeper into the more critical stateful
containers. This strategic design lowers the need for frequent stateful LiMis, which are not primarily
used for infection cleansing but are employed as a proactive MTD measure to mitigate the risk of
side-channel attacks, as previously addressed in SotA LiMi-based MTD approaches discussed in the
related work section. The effectiveness of this policy is demonstrated in the performance evaluation

in Section 5.3.1.

4.3.5 CoNTMTD IMPLEMENTATION

This section describes the implementation of the ContMTD framework and further technical details
of its modules, focusing on the container LiMi, the creation of a LiMi dataset, and the ML regression

and classification models trained.
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CONTAINER LIM1

The LiMi controller module manages container migrations and comprises three components: a LiMi
client, a LiMi server, and an L2 bridge. During migration, both the LiMi server and client establish
a secure SSH tunnel to ensure end-to-end encryption of the container’s checkpoint during transfer.
The transfer process utilizes rsync, which is optimized to transmit only the incremental differences be-
tween the new checkpoint and other possibly existing images of the container at the destination. The
LiMi controller supports various migration methods (basic, pre-copy, post-copy, and hybrid) via the
LiMi client, which directly interfaces with runC and its CRIU integration to initiate migrations. The
LiMi server also operates through the runC interface to receive the eventual pre-dumps, dumps, and
post-copy memory pages from the LiMi client and to restore the container at the destination node.
For stateful migrations, CRIU is configured to preserve TCP-established sockets, ensuring that exist-
ing connections between the container and its clients remain intact. Since TCP sessions are defined
by IP address and port pairs, the L2 bridge module ensures the migration of the container’s IP address
at the ARP (Address Resolution Protocol) table level. This is critical for maintaining session conti-
nuity and minimizing availability disruptions for services that rely on persistent connections, such
as databases, SSH sessions, and voice-over-IP (VoIP) applications. Finally, the LiMi client reduces
LiMi downtime by transferring in parallel both the dump/checkpoint delta and the volume delta for

container applications with writable root file systems.

BENCHMARKING CONTAINERS

To test all the 108 categories that containers can fall into, and for subsequent benchmarking purposes,

a containerized application is implemented to cover the different loads as follows:

1. CPU: perform a series of exponential calculations and use a random number generator. Multiple

instances are executed for multi-core loads.

2. RAM: saves the randomly generated data in the application memory segment. To reduce RAM
operations’ dependency on CPU usage, only 1 MB of data is randomly generated at every writ-

ing cycle, which is then written iteratively to 50 MBs of newly allocated memory pages.

3. Disk: writes the data in a file and flushes the file descriptor to ensure it has been written in the

disk.

4. Network: runs a FastAPI server that receives HITP requests and replies with the total number

of requests received, allowing the verification of a successful stateful migration.
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Figure 4.10: Measurements of actual resource consumption vs. intensity levels[144].

The different intensity levels are set within a container by limiting the resources the container can use
when running. This is done using the Linux cgroups kernel functions set at the container runtime
level (i.e., runC), except for the network intensity limits that are set by configuring the Locust
client with a specific number of users and HTT'P requests per second sent to the container, following
the thresholds previously defined in Section 4.3.2.

When containers are operational, the monitoring module of ContMTD uses the runC interface to
get the status of each container and the Linux pidstat kernel function to monitor the CPU, RAM,
and disk in real-time. During the evaluation, it became clear that some combinations are practically
not feasible. For instance, when the CPU limit is low, the RAM and disk usage cannot be high due
to the computational bottleneck of the CPUj effectively reducing the performance of read/write op-
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erations per second and IOPS, even when limits are set to high. Similarly, if the limits on RAM are
low, disk performance will also be reduced. Hence, a series of measurements is run for all the 108
possible combinations, running the container application for 180 seconds (i.e., three minutes) and
measuring the actual resource consumption of the application. The measured resource consumption
is evaluated to find which combinations are actually possible to run, and the thresholds reflecting
the distinction of intensity levels on the 4 resources are statistically set. Figure 4.10 shows the dis-
tribution of resource consumption for each type of resource, using pidstat for CPU, RAM, and
disk measurements. New intensity thresholds are then fixed based on the distribution to maximize
the number of technically valid combinations. In a second step, some combination intensities were
relabeled based on these thresholds rather than the original cgroups limit, defined as the “de facto
consumption” of the containers that were expected to use resources differently. For instance, the
container “llmo,” standing for low CPU, low RAM, medium disk, and "0” networking, was renamed
“lllo” as de facto; the disk consumption was low. Using the new “de facto” consumption labels, 34

valid combinations are obtained, which inherently include the 21 combinations validated in the first

step, as their new labels are the same as their original ones and they get equally revalidated.

DATASET CREATION

The LiMi measurements used to form the dataset for the ML module are performed on the running
container application with the 34 resource combinations. Each container is migrated in 4 different
ways: cold/standard LiMi, pre-copy migration, post-copy migration, and hybrid migration. Each
migration is performed 55 times per container, for a total of 7480 LiMis performed. Out of these

7480 migrations, 5890 could be validated due to technical issues.

On each LiMi performed, along with the LiMi optimization method used and the container cate-
gory, additional features are extracted, including total migration time, pre-dump time and pre-dump
size, pre-dump transfer time, dump time and dump size, dump transfer time, volume size and volume
transfer time (the size considers delta optimization of sync transfer), time for parallel transfer of the
dump and volume deltas, layer 2 IP transfer (via ARP table update), restore time, approximate con-
tainer downtime (calculated by summing dump time, dump transfer time and restore times), and a
precise downtime measured by the locust traffic generator (including the additional downtime from

packets queuing).
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ML MODULE’S REGRESSORS AND CLASSIFIERS

In this work, two classification techniques are proposed to predict the best LiMi method for a con-
tainer category. The first is a statistical model built based on the migration downtime data in the
dataset. It takes the average downtime per container category and per LiMi method, and selects for
each category the method with the smallest average downtime. The second classification method
uses a ML regressor model trained on the dataset to estimate the service downtime during migra-
tion. A simple classifier would then define the optimal LiMi method to select as the one with the
lowest estimated downtime, as mentioned in the ContMTD workflow in Section 4.3.3. For the eval-
uation of the regressor model’s performance, we test four different ML algorithms to train the model:
Random Forest Regressor (RFR) [145], Support Vector Regression (SVR) [146], NN [147],
and Bayesian Ridge (BR) [148]. The hyperparameters used are described in Table 4.2, selected
with grid search and k-fold cross-validation during training. The same algorithms have been used to
train the second regression model on the dataset for predicting the total migration time, used in the

scheduling algorithm.

Table 4.2: Optimal hyperparameters for the regression models.

Parameter Optimal Value Parameter
Model ; P
Name Downtime | Mig. Time Space
RER Ma.).(Depth 8 8 2,3, 4y .., 10
Estimators 650 250 50, 100, ..., 1000
Hid. Layers 160 200 100, 120, 140, ..., 200
NN Act. Func. ReLU ReLU ReLU, tanh, logistic
Solver LBFGS LBFGS Adam, SGD, LBFGS
BR Max Iter. 700 800 100, 200, 300, ..., 1000
Tol 0.0006 0.0004 1e-4,2€-4, ..., 1e-3
SVR Degree 6 7 . 1,2,3, ..., 1'0 .
Kernel poly rbf linear, poly, rbf, sigmoid

CoNTMTD SCHEDULING ALGORITHM

Algorithm 2 defines the ContMTD scheduling algorithm designed to optimize the start and end
times of container migrations in such a way that all containers complete their migration process simul-
taneously. This minimizes the potential disruption to services caused by migration by coordinating

the start times across all containers.
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Algorithm 2 Container Migration Scheduling

1: procedure SCHEDULE_ MIGRATION(cnt_list, reg _model)
2: T,u< o0

3: for each cntin cnt_list do

4 cnt.migration_time <— reg_model(cnt)

5 if cnt.migration_time > T, then

6: Tong < cnt.migration_time

7: end if

8: end for

9: for each cntin cnt_list do
10: cnt.start_time <— T,,q — cnt.migration_time
11: end for

12: end procedure

CloudHopper, a recent work implementing parallel container LiMi [56], proposes a method that
sorts containers based on their image size, transferring first the biggest container. The next biggest
container is then transferred when its image size becomes equal to the remaining image size of the
previous container still being transferred. An issue identified by this method is that it does not con-
sider the possible difference in the pre-dump and dump time, as well as the restore time, which can
drastically change depending on the container’sload. ContMTD proposes a new approach that lever-
ages the regression model of the ML module for the scheduling of the migration process. First, the
migration time of each container in the application is estimated by using the trained regression model.
Then, the maximum estimated migration time among the containers in the application is obtained,
which will be used to schedule the migration of all relevant containers. For each container, the algo-
rithm computes the ideal start time of migration by subtracting its predicted migration time from the
overall maximum migration time. Depending on the accuracy of the regression model, this ensures

that each container finishes migrating approximately at the same time.

4.3.6 CoONTMTD SECURITY STRATEGY

A notable issue that has not been comprehensively addressed in the existing literature is related to
the limitation in neutralizing malware infections and backdoors using stateful LiMi compared to the
stateless LiMi method. In the case of stateless services, the image utilized for instantiating a new in-
stance at the destination node does not have to be a direct checkpoint of the running instance at the
source node; instead, it can and should be derived from an authenticated, original container image
free of any infection or malware introduced post-instantiation. Conversely, in the context of state-

ful services, if an instance is contaminated and subsequently migrated, the new instance inherits the
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infection, perpetuating the compromised state of the service, i.e., stateful infection persistence. This
distinction underscores a critical security difference and a challenge in maintaining the integrity and
security of stateful services.

To utilize the security property of stateless LiMi when performing LiMi of stateful services, a solu-
tion is to leverage the microservices architecture and established decomposition best practices. One
such best practice in decomposing the service into multiple microservices is to separate the stateless
components of the service into a maximized set while maintaining a minimal set for stateful compo-
nents, which may reside in separate microservices (or more traditional server VMs based on specific

technical requirements), i.e., a “stateless-ification”

_____________________
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Auth. service User manager

communication v
AP| gateway service ‘,
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Figure 4.11: Microservices generic architecture of a web service with stateless containers on
the forefront of the service. Red represents high exposure to security threats. Orange has a di-
minished risk profile, whereas green exhibits minimal exposure.

lustrated in Figure 4.11 is an example application of this architecture for a generic web service
comprising a front-end GUI, a user management and authentication system, a communication and
message/queue service application, and other potential stateful applications requiring a database
and/or an in-memory cache. The proposed security solution involves granting access to the stateful
microservices through the stateless microservices, such that compromising a stateful container would
require first breaching and compromising the stateless container. This configuration facilitates more
frequent stateless LiMis for containers at the service forefront, which are less critical but most sus-

ceptible to attacks and undetected infections—akin to a demilitarized zone in a networked system.
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This approach enables the frequent “cleaning” of the service from potential malware and backdoors,
significantly reducing the likelihood of attackers advancing to the stateful critical containers sitting
in the back. Furthermore, this setup would limit the necessity of frequent stateful LiMis of the latter
containers, not used for infection cleansing but as a proactive MTD strategy to reduce the ASP of

side-channel attacks.

4.4 ToproFuzzEeR - A SEAMLESS LIVE CONNECTION HANDLER

TopoFuzzer is the third solution proposed in this thesis and covers the implementation of the “net-
work reconfiguration” operation of MERLINS EL layer, extending answers to the research questions
RQ1 and RQ2. As covered in the foundational chapter in Section 2.3.3, operations such as LiMi
require an efficient redirection of clients’ requests and connections to keep the continuity of the pro-
vided service when it is being moved to a new location. A relevant challenge here is posed when
dealing with session-based protocols such as TCP, especially in the event where the service changes
its IP address, asin MOTDEC’s IP and port shuftling performed with soft MTD actions. By maintain-
ing long-lived sessions between the two endpoints, Topofuzzer effectively enables the live continuity
of the migrated server, reducing the overhead of MTD operations on QoS and QoE of NFs. Topo-
Fuzzer also enables the creation of other sets of soft MTD actions with a limited network overhead and
resources required, using a fuzzing virtual network to change the apparent topology of the protected

network.

4.4.1 TorPoFuUZZER ARCHITECTURE

TopoFuzzer’s architecture is depicted in Figure 4.12, encapsulating three main components: 1) The
IP mapping table mapping the public IP to the private IP, 2) The redirection module composed of
multiple proxy-NICs, and 3) The fuzzing virtual network allowing to implement Soft MTD actions.

The following subsections describe the main components of the architecture and their objectives.

IP MAPPING AND INTERFACE TO MOTDEC

Public IPs are predefined for each VNF as they remain fixed during hard MTD actions. When a VNF
is deployed, the private IP assigned by the VIM hosting the VNF is given to the MTD controller
MOTDEC, who then sends both IPs to TopoFuzzer. TopoFuzzer maintains the mapping between
private and public IPs. If the VNF is deployed for the first time, a new mapping is registered and the
public IP is assigned to a new vNIC, which will be used by an instance of the 2-socket proxy. If the
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Figure 4.12: TopoFuzzer architecture.

VNF is already deployed, only the mapping is updated, while the vNIC and the proxy instance are
preserved. The mapping is a hash table with two entries per one mapping (i.e., pubIP—privIP and
privIP—pubIP). This allows fetching the IP addresses in both directions with a constant complex-

ity (i.e, O(1)).

2-SOCKET PROXY REDIRECTION IMPROVEMENT USING CONNTRACK AND PORT FORWARDING

TopoFuzzer’s solution to maintain TCP sessions when the IP and port of an endpoint change is in-
spired by [108], which implemented a two-socket proxy system to seamlessly redirect an attacker’s
traffic to a honeypot server without the latter being aware of it. While such a use case only considers
redirecting the traffic of a service running behind one specific port (e.g,, a web server on port 80),
VNFs have multiple ports open. Hence, the proxy should be able to redirect traffic with different
destination ports simultaneously. Moreover, a proxy node can only redirect the traffic to one VNFE,
as it configures its VNIC to use the VNF’s public IP to receive client traffic.

In TopoFuzzer, to enable multiple connections with different destination ports to the same VNF,
the proxy instance assigned to the VNF binds the in_socket to a fixed known port. A port forward-
ing rule is going to change the destination port of all the traffic sent to a VNF. This allows the proxy
to receive all the traffic despite listening to one port. However, once the port changes, the different
traffic streams are not distinguishable, as the proxy needs to forward the traffic to the private IP with
the original destination port used by the client. In order to get back to the original destination port,
TopoFuzzer uses a Linux Kernel feature that keeps track of all the connections and that is used to
enable NAT operations, conntrack [149]. To identify the right connection of forwarded packets,

TopoFuzzer uses three available values: the connection type (which, in this case, is always TCP), the
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source IP of the client, and the source port of the client. Knowing the connection is session-based,
the pair (source_IP, source_port) is unique per connection (contrary to UDP, where the same

pair can send packets to different IPs and ports).

FuzzING VIRTUAL NETWORK

To perform Soft MTD actions without affecting the real network topology but changing the topol-
ogy view from the client perspective (e.g., if they scanned the network with tools like traceroute
and nmap), a virtual network composed of switching and routing nodes is placed between the proxy
nodes and the User Plane Function (UPF). Adding a gateway in the route, removing one, or replac-
ing it with another gateway are all operations that affect only the visible session to the clients. In con-
trast, the sessions from the out_sockets of the proxy nodes to the VNFs are internal by nature and,
hence, not modified. These operations can be enforced by using an SDN controller connected to the
switches of the fuzzing virtual network. The SDN Controller is hosted in the MOTDEC module, as

it orchestrates MTD actions.

4.4.2 ToroFuUzzZER IMPLEMENTATION

The TopoFuzzer framework is implemented in Python. The IP mapping is implemented using a Re-
dis' hash table, which is then accessible via a REST API implemented in Flask, enabling commu-
nication with MOTDEC. As Redis is an in-memory store, fetching a new private IP for a specific

connection is considerably faster than passing through storage.

The fuzzing virtual network is implemented in Mininet, enabling the dynamic generation of lightweight
nodes equipped with vNICs. Each node serves a dual purpose: (1) as a standard network endpoint
and (2) as a runtime-generated proxy for individual VNFs. To achieve this, the system spawns iso-
lated Python interpreters (handling the 2-socket proxy function) per node while retaining all pro-
cesses within the shared Linux kernel space of the TopoFuzzer framework. This design supports rapid
deployment in large-scale networks with minimal incremental resource overhead per VNF, as kernel-
space operation avoids the need for full virtualization. Furthermore, proxy nodes exchange data and
directly access the IP mapping table without network-based data exchange, reducing communication

latency and bandwidth consumption.

'https://redis.com
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Figure 4.13: OptSFC architecture.

4.5 OPTSEC - A DEEP-RL OPTIMIZER OF MTD STRATEGIES

The OptSEC solution implements the cognitive element of the MERLINS HLA, the DML, respon-
sible for the tasks of decision-making and MTD strategy definition. OptSFC answers to the research
questions RQ2 and RQ3 ‘Which formal modeling approaches are most suitable for representing commu-

nication networks to enable near real-time monitoring and security assessments for MTD systems?.

4.5.1  OPTSFC’S ARCHITECTURE

OptSFC generates optimal MTD policies for proactive security of network slices. By formally model-
ing telecommunication networks compliant with NFV into a multi-objective Markov Decision Pro-
cess (MOMDP), OptSFC uses deep-RL to find the optimal balanced strategy to maximize security
(i.e, minimize threats), to minimize its operational cost, and to alleviate the impact on QoS and ser-
vice availability.

OptSFC’s architecture and the workflow of its decision-making process are depicted in Figure 4.13.
MERLINS framework consists of the following modules: the risk assessment (RL.AS.) module, the
MOMDP modeling module, and the deep-RL agent optimizing and deciding on the MTD policy.
Finally, OptSFC is interfaced with the MOTDEC solution, using the data gathered by its monitoring
module and sending the decisions of MTD actions to execute to its MTD controller, as depicted

in the sequence diagram of Figure 4.14. The diagram details the workflow of OptSFC, operating
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Figure 4.14: Decision-making process and MTD action enforcement in MERLINS.

the decision-making for MTD actions reactively, when a security agent sends an anomaly or attack
alert, or proactively, when they are based on the MDP modeling of the state of the network to harden
exploitability tasks of possible offenders. MOTDEC’s MTD controller, upon receiving the decision
from OptSFC, obtains a first-hand validation from the NFV MANO and network slice manager to
verify the feasibility of the MTD actions against possible conflicts with other orchestrating operations

or higher-level constraints.

The following sections describe the data collected by the RI.AS. module and other collectors in
correlation to the three optimization objectives defined in the MOMDP.
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RIAS. — THREAT AND Ri1SK ASSESSMENT MODULE

Continuous threat analysis and risk assessment are performed to enhance the MOMDP for proac-
tive MTD decisions. Using the open-source vulnerability scanner OpenVAS, the RI.AS. module
identifies running services using the Common Platform Enumeration (CPE) and performs active
and passive vulnerability scans using maintained public and private vulnerability databases such as
the Common Vulnerability Enumerations (CVE) database and Network Vulnerability Tests (NVT)
database.

The former allows finding possible vulnerabilities based on the CPE of the services running in the
targeted host. These scans are passive and prompt but may contain false positives. NVTs instead are
based on active and more precise scans using local security checks of a range of operating systems
and solutions from different vendors (e.g, Intel, Cisco, and Oracle products). The RI.AS. module
schedules the scans for all VNFs in one or multiple network slices, periodically and every time a VNF
is re-instantiated. Figure 4.15 illustrates the web GUI of OpenVAS and the example of CVEs de-

tected when scanning a VNF in the §G testbed with a vulnerable version of Grafana. The module
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Figure 4.15: Screenshot of the OpenVAS GUI and the CVEs found in the running VNFs.
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then groups the CVE details of detected vulnerabilities into three general types of threats: 1) APTs,
identified by vulnerabilities that allow the remote execution of code or the malware infection of the
target; 2) Data Leak Threats, identifying vulnerabilities that allow gaining sensitive information: e.g,
SQL and XSS injection, directory traversals, and local file inclusion; 3) DoS Threats, grouping CVEs
based on Buffer Overflow vulnerabilities and NV Ts finding network-based DoS vulnerabilities.

The RI.AS module quantifies the risks of a VNF for each of the three major threat groups in terms
of ASP. The ASP value is calculated by considering the number of ports open for vulnerable applica-
tions, by aggregating the relative maximum exploitability score and base_score of the vulnerabilities,
obtained from the the Common Vulnerability Score System (CVSS) [150] from the National Vul-
nerability Database (NVD)[151] maintained by NIST. The ASP values are then incremented with
time, representing the advantage of attackers when they have a static target. When an MTD action is
performed on the VNF, the ASP values of the mitigated threats are reset to their original value (i.e.,
removing the time advantage and only reconsidering the vulnerabilities of the VNF). Finally, similar
to the QoS SLAs, OptSFC allows the definition of security SLAs (SSLAs), generalized to a value
indicating the criticality of an attack to the VNF. The security risk is then defined for each VNF as

sec_risk = max(ASP X cvss_score) X vnf impact.

MTD ActioN COST MEASUREMENT

Table 4.3: Regression results on the CPU and RAM price from 66 percent of the cloud market
in 2022 Q3.

Dependent variable:

Price ($/hour)
a, (CPU_core) 0.031"* (0.001)
a, (RAM_GB) 0.004™** (0.0002)
B (constant) —0.082"* (0.018)
Observations 72
R* 0.994
Adjusted R? 0.994
Residual Std. Error 0.127 (df = 69)
F Statistic 5,706.468*** (df = 2; 69)
Note: *p<o.1; *p<o.05; “p<o.o1
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To measure the cost of MTD actions in terms of resource consumption, an empirical measurement
of the cost of virtual resources is done to find the coefficients between CPU cost, RAM cost, and stor-
age cost, based on the definition of resource.,s = p + a, X cpu+ a, X ramg, + a, X storagey, in USD
per hour ($/hour). For simplicity, the cloud providers’ convention of $/hour as a measurement unit
for virtual resources is used in this formulation. The prices of over 70 VM offers are collected in 2022
Q3, ranging from VM instances of 1 CPU and 0.5GB RAM to instances with 128 CPUs and 864GB
RAM, from four major cloud providers: AWS, Azure, Google Cloud, and OVH (covering at least 66
percent of the worldwide market in Q3 2022, estimated by Synergy Research Group [152]). We did
not distinguish between high-tier and low-tier hardware, and since the various prices have different
coeflicients, a closed-form polynomial system is not solvable. We use linear regression to find the
approximate coefficients, which have a low P-value and a strong correlation with the different VM
offers. The strong correlation of the variables in the linear regression, shown in Table 4.3, demon-
strates the statistical relevance of the coefficients found per unit costs of CPU and RAM. From such
coefhicients, we derive the costs of 0.03147 $/h per CPU-core, 0.004244 $/h per GB of RAM, and a
constant f of -0.082. As storage is a cloud service provided separately from the VM instance, its cost
is measured separately from the average of 37 hot storage prices (i.e., SSD-based fast, regularly ac-
cessed, and high data-volume storage, with no further distinction between high-tier SSD and normal
SSD disks). Prices are given by the same four cloud providers, giving a final mean price of 0.000066

$/h per GB of storage.

4.5.2 MOMDP MODELING OF THE NETWORK

For the decision-making task, the MDP model represents the networkasa tuple (S, A, P, R, y), where:

« Sis the set of all possible states. In practice, at each time t, a state S; is defined by the status
of the resources to be protected, e.g., the 5G core, the UPF, the virtual Evolved Packet Core
(VEPC), the gNBs (the equivalent of eNodeBs in 4G-LTE networks), and the functional NSs.
The status of a resource is defined by its runtime condition (running, idle, voluntarily stopped,
or accidentally stopped), the resource consumption (CPU, RAM, and disk), and its network
metrics (such as I/O frequency, bandwidth, and latency). It is also defined by whether an
anomaly detection system found it as a target of attacks or anomalies. The total number of
possible states in the environment is ||S|| = Nyeources X (1 + Neonsumes + Niet - perf T+ Nuttacks)s
where N, ources is the number of resources to be protected and on which MTD operations are
performed. 1formally denotes the constant set of features like the runtime condition and other

network characteristics. Nionsumes and Nyt pers are respectively the number of resource con-
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sumption metrics and network metrics, which are checked against established requirements.
Finally, Nysacis is the number of attacks detectable by an anomaly detection system. Attack de-
tection would endow MERLINS ability to act reactively and proactively (based on measured

performance and other passive metrics).

« Ais the set of actions a;, i < NA, that the RL agent can take. In practice, in this MDP, the
actions are the different MTD operations available for each resource to be protected. Thus,
the action space |A| is upper-bounded by NA = Nyrp X Nysourees + 1, where Nyrp is the
number of MTD operations applicable to a network resource and 1 represents the action of

“doing nothing”.

« P is the transition probability matrix representing the probability that an action g; changes a
specific state s to the state s, i.e,, Va € A, Pass’ = P[S; + 1 = §'|S; = 5, A; = a]. This matrix
is updated during training and represents the uncertainty of the RL agent in reaching its goal
with a specific action: for instance, the RL agent can decide to perform the action a; to mitigate

an ongoing attack, knowing this action could not succeed with a probability of 1 — Pass’.

« Ris the reward function that defines the reward obtained at time t+1 when performing an ac-
tion a; from a state sattime t, i.e, R, = E[R;4,|S; = s, A; = a]. Inpractice, the reward/penalty

will be given based on four factors:

1. The status of the protected resource (e.g., a penalty is given when the resource stops

accidentally after an agent’s action);

2. The distance of the measured metrics from the established minimum and maximum re-
quirements (e.g., the bandwidth used by a resource is less than what is needed, which
can be computed based on the frequency of I/O operations, and is inferior to the re-

quirement) ;

3. The mitigation of an attack, which is rewarded proportionally to the threat that the attack
poses, is defined based on the CVSS [150], which is a widely-used industry metric. Vice

versa, when an attack occurs, the MDP scores a penalty, i.e., a negative reward;

4. The cost of an action, as each MTD action has a different cost in terms of resource con-
sumption and “time to enforce”, translated in a negative reward, i.e., a penalty when the
action is performed. Another factor is the importance of each protected resource for the

5G infrastructure. For example, the VEPC is a core function upon which all network
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slices depend. Thus, it is more critical than other network services. This can be intro-
duced in the MDP through higher rewards or penalties compared to when the same ac-

tion is performed on a different resource;

« 7 is the discount factor used to define the importance of the immediate reward compared to
future rewards. As MERLINS performs a single continuous task, the deep-RL model cannot
be trained on a batch of episodes, but rather, on the continuity of the management task. Ac-
cordingly, 7 is set close to 1 to have a more relevant consideration of future rewards during the

task continuation, rather than a greedier decision-strategy focused on immediate rewards.

The reward vector R groups the collected data/features based on three optimization objectives:

IMPROVEMENT OF THE RISK ASSESSMENT FOR PROACTIVE SECURITY

The risk assessment for proactive security uses the data from the RI.AS. module previously described

in Section 4.5.1.

REDUCTION OF THE OPERATIONAL COST OF MTD

Assome MTD actions, such ashard MTD actions, require additional resources to reinstantiate or mi-
grate a VNF, the operational cost of MTD actions is defined as mtd,,; = resources ., X deploymentyy,.
The results in Table 4.3 are used to measure resources,,, while deployment,,, is the measured mean

value for every VNF running in the network.

IMPROVEMENT OF THE NETWORK PERFORMANCE (AND REDUCTION OF MTD NETWORK OVER-

HEAD)

As MTD actions may require redirecting the traffic of end users, which can affect mid-term perfor-
mance of the service based on the distance of the new location, we need to consider the network
performance in OptSFC decision policy. To measure it, OptSFC collects from the MMT probe the
following network metrics with a regular frequency of five seconds for every protected VNF: number
of UEs connected to a VNF, connection latency (derived from the RTT values of packets), connec-
tion throughput, packet loss rate (derived from packet retransmission requests), and the number of
packets flowing in and out. From these monitored values, we derive the mean packet loss rate in-
crease and the mean latency increase caused by the MTD action, and define its QoS overhead as

mtd_Q0S,vernead = (1 + p_loss_rate_increase) X latencyineeqs.. Moreover, if an MTD action causes a
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violation of an SLA, the overhead is increased by a penalty factor, which is a hyperparameter of the

ML-training phase.

4.5.3 DEEP-RL AND MULTI-OBJECTIVE OPTIMIZATION OF MTD STRATEGIES

OptSFC optimizes the MTD proactive decision policy using deep-RL. The deep-RL agent can pro-
pose an MTD action to the MTD controller periodically or after an alert from a detection system (re-
active event-driven case). In both cases, the proposed MTD action has to be validated by the network
slice manager and the NFV MANO for possible conflicts with other management and orchestration

actions.

As the MERLINS architecture is agnostic of the decision-making engine, different deep-RL meth-
ods can be tested and benchmarked to find an optimal solution to the defined optimization problem.
The training can occur offline, before deployment of the deep-RL agent in an operational sG net-
work, by using sG testbeds, simulated environments, or digital twins; or it can also occur online
during its deployment. It is reasonable to perform both types of training as each one will address
a specific problem: 1) chaining MTD operations randomly can be costly, hence, the deployed RL
agent should have an off-line trained policy to avoid groundless decisions; 2) With online training

the RL policy can adapt to the dynamics of the network, leading to better decision making over time.

The deep-RL algorithms benchmarked in this work come mainly from two distinct families of
RL: 1) legacy single-objective deep-RL and 2) multi-objective deep-RL algorithms. While the lat-
ter takes the vector reward R as it is, the former is trained by scalarizing R to a single reward value.
From the single-objective deep-RL class, four algorithms are evaluated: a deep Q-learning network
(DQN) [153], an advantage actor-critic (A2C, synchronous version of A3C [74]), a proximal policy
optimization (PPO) algorithm [75], and a variation of PPO with action masking (MaskablePPO)
proposed in [154].

DQN uses a convolutional neural network (CNN) with three convolutional layers that extract 512
linear features. For the CNN, the observation vector of the MOMDP is converted to an RGB image.
The other three algorithms use a multi-layer perceptron (MLP) NN with 64 layers of 64 perceptrons
and a Rectified Linear Unit (ReLU) [155] activation function at each layer.

From the multi-objective deep-RL class, two algorithms are used: Envelope MORL [156] and the
expected utility policy gradient (EUPG) [77]. While Envelope MORL uses a conditioned DQN NN
to embed multiple policies, EUPG scalarizes the rewards during training based on the accrued return

on rewards.
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4.5.4 |MPLEMENTATION

The MOMDP model is implemented using MORL Gym, a variation of OpenAl Gym [157] which
enables multi-objective observations served to MORL algorithms for the training and inference pha-
ses (i.e., the observation environment). The mono-objective deep-RL algorithms use instead the
MDP model built directly with OpenAl Gym, factorizing R to R. The deep-RL agents are imple-
mented using Stable-Baselines3 [158] for the mono-objective deep-RL algorithms, while MORL al-
gorithms are implemented and deployed with MORL-Baselines [159]. The OptSFC module was
implemented in Python, the common denominator of the modules mentioned above, as well as all

MERLINS solutions implemented in the thesis.

4.6 MTDEFED - A FEDERATED MULTI-TENANT MTD MANAGEMENT

MTDPFed, the final solution proposed in this thesis, addresses the federated cooperation component
within the MERLINS framework’s MOL layer. Specifically, MTDFed tackles Research Question 4
(RQ4): ‘How to distribute the control system of the cognitive MTD solution in a multi-tenant environ-
ment?. MTDFed introduces a centralized FL-based system that distributes multiple instances of
the OptSFC framework across different VNOs. This enables the joint training of their respective
MORL/deep-RL models while ensuring the confidentiality of each operator’s data. This includes
both the monitored metrics of their respective virtual networks, created using isolated network slices,
and the confidentiality of their individual RL models.

The MTDFed architecture, illustrated in Figure 4.16, reflects the separation of VNOs while they
operate within the same infrastructure. Each VNO runs its instance of the MERLINS framework,
owning a local MTD controller and all components required in the proposed MERLINS HLA. This
means VNOs are independently deciding which MTD actions to perform and independently en-
forcing them on their own services. Since the infrastructure is typically owned by one of the VNOs,
which also assumes the role of an Infrastructure Communication Provider (ICP), MTDFed imple-
ments a centralized FL framework with a single model aggregator. This aggregator resides outside the
network slices of the VNOs but within the same infrastructure. This architecture necessitates a level
of trust in the ICP, which is considered a reasonable assumption given that VNOs must inherently
trust the ICP to host their network slices within its infrastructure. As discussed later, this trust can
be further enhanced by employing TEEs. This allows for cryptographic verification of the FL model
aggregator through remote attestation [160], ensuring its integrity and confirming that it is running

within the TEE enclave of a designated server.
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Figure 4.16: MTDFed architecture.

PRIVACY CONCERNS IN DATA & MODEL SHARING

As an instance of MERLINS locally runs by each VNO, in each core and edge domain, VNOs install
different network monitoring probes capturing only the traffic related to their own VNFs/CNFs,
which in contrast runs by the same network slice manager and NFV MANO component of the main
network, but with different access rights and management of the resources based the network slice
and VIM credentials (i.e., the credential to access an Openstack project space for the VIM or the
network slice manager for handling VNFs/CNFs and NSs). MTDFed keeps OptSFC’s approach of
having a single decision-making system running in the core and deciding on the operations over all
the domains of the VNO, both in the core and the edge. Thus, the data required by OptSFC for form-
ing the MOMDP observation and deciding on the MTD action to perform is normally transferred
from the edge nodes to the core, where the OptSFC agent runs. The security and confidentiality of
these transfers are guaranteed by the isolation of the network slices. For the centralized FL process
between the VNOs, only the deep-RL models used by the OptSFC agents are needed, while collected

monitoring data are never shared.

Furthermore, the deep-RL modellocal to the VNO is also prevented from being obtained by other
FL participants, and particularly by the ICP hosting the aggregator, as sharing the model weights
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equates with sharing the model, enabling the aggregator to obtain all the models of the participants.
Moreover, from an NN model, malicious actors could leak the local data used to train the models
using methods such as reversed inference attacks [ 161, 162]. MTDFed implements the secure aggre-
gation strategy from Bell et al. [ 163], a Secure Multi-Party Computation (SMC) wherein a randomly
selected subset of FL participants are paired to share incomplete portions of their model’s weights and
perform partial aggregations before the global aggregator completes the task to form the new global
model without receiving the individual model of each participant. Formally, each participant u € U
formats its FL updates as a vector x, of dimension k and composed of integers on the range [0, R)

for some known R. The elements of the vectorx = ) | resulting in the sum of all the partici-

w inU %w
pants’ vectors, should also be in the range [0, R). Assuming a pair of participants u and v, u samples
avector s, , uniformly from the [0, R)* for each other participant v. Participants u and v exchange s, ,
and s, , over a securely encrypted channel and compute perturbations p,, = s,, — s, ,, obtaining
perturbations such thatp, , = —p,, (mod R) and p,, = o when u = v. Each participant then sends
to the aggregator y, = &, + D i, pu,» (mod R). Finally, the aggregator simply sums the perturbed
values as the paired perturbations in y, cancel each other, and what is obtained is simply the sum of

all participants’ vectors, X.

@ MTDFed Aggregator

Zi:[l,:z] Yi = 2[1,3] T =z

perturbed weights

Y1 =21+ P12+ P12 —$3+P32+p31
Y2 =2+ P21+ D23

A

T 3

I pairwise perturbation
P12 = 812 — 8211 P21 = 821 — 81,2 D32 = 832 — S23
P1,3 = 81,3 — S3,1 D23 = S23 — S32 P31 = 831 — 51,3

Figure 4.17: SMC secure aggregation workflow.

99



4.6.1 FEDERATING THE DEEP-RL AGENTS

In the context of OptSFC, which uses deep-RL to train the decision-making agents, MTDFed has to
apply FL in the training of its deep-RL agent. In the case of the actor-critic methods, namely PPO
and A2C single-objective algorithms, two NN are deployed: an actor network and a critic network.
The actor network (or policy network) directly implements the agent’s policy, i.e. the mapping be-
tween a network state and the relative optimal MTD action to be taken; thus, this is the agent’s main
target model to be trained collectively. On the other hand, the critic network (or value network)
implements the value function, which estimates the value of being in a particular state (i.e. V(s)) or
taking a particular action from a particular state (i.e. Q(s,a)). While critic networks are typically
environment-specific, in the context of MERLINS and the OptSFC solution, since both the action
set and the MOMDDP model are the same for all the participants, MTDFed aggregates both the actor
and the critic models of the deep-RL agent.

The aggregation includes both weights and bias parameters, the latter adjusting the models’ output
and playing a key role in the models’ behavior and performance. Nevertheless, MTDFed does not ag-
gregate the parameters of optimizers such as the Adam gradient-based stochastic optimization [ 164)].

This aggregation in MTDFed is omitted for four main reasons:

« resilience to data heterogeneity: participants can adapt their optimizers to their specific data
distributions, allowing for better local learning. This is beneficial for non-independent and
identically distributed (non-1ID) data. In this specifically targeted scenario of NVOs, this can
be related to certain characteristics of VNFs/CNFs, such as the exposure of a service to vulner-
abilities, the size of a service, or the different types of resource and network loads as explored

in the ContMTD solution (c.f. Section 4.3.2).

- stability in training: Optimizer parameters tend to reflect recent gradients, which may not

generalize well across clients. Keeping them local avoids instability during aggregation.

- faster aggregation: Aggregating only the weights and biases without optimizer states reduces

the communication overhead.

« practical precedent: Most FL systems, including the canonical FedAvg paper, aggregate only

the model parameters and leave the optimizer states [ 165 ].

A risk of not synchronizing the optimizers is that the different NVOs diverge at each aggregation
round and end up with very different optimizer states, leading to the aggregation of conflicting models

and ultimately decreasing the performance and convergence time of the deep-RL agents. For this
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reason, at every aggregation round, MTDFed reinitializes the optimizer of all NVOs, ensuring the
same momentum-free model for all participants each round and mitigating the risk of optimizer-

induced divergence.

4.6.2  IMPROVEMENTS ON OPTSFC’s MOMDP MoODEL

During the MTDFed implementation, the MOMDP model underwent several refinements. To sig-
nificantly reduce the exploration space (i.e., the total number of possible states), the following opti-

mizations were implemented:

« Observation’s reduction: Some features considered non-relevant based on the OptSFC eval-
uation were removed, such as the parent NS and NSi for each running VNF/CNF. Redundant
features were also removed, such as the location feature, which is redundant with the "VIM_ -

host” feature.

. Threatandrisk values scaling: Reduced the range of threat and risk features from [—100°, 100°]

to [0, 10]. This scaling was also facilitated by the subsequent update of the reward function.

The initial reward function incorporated an ASP that increased over time to represent the attacker’s
advantage against a static target. However, this resulted in the ASP rapidly converging to the upper
bound, leading to a constant maximum penalty after a few steps. To address this, the reward function

was modified to incorporate a sigmoid function, enabling a controlled, S-shaped increase in ASP:

. Pend — Pstart
P(0) = puan + P

where p(t) represents the ASP at time , py, the initial ASP value, p,,; the maximum ASP value
(i.e., one), T the total duration or timeframe considered (i.e,, one month), and k the constant that
controls the steepness of the sigmoid curve. Following this formula, the reward function provides
a more realistic representation of the gradual increase in an attacker’s ASP and enables the deep-RL
agent to more effectively perceive the evolving threat landscape during the exploration phase.

The MOMDP model was further extended to accommodate container-based CNFs. While the
general modeling approach for CNFs remains similar to that of VNFs, key distinctions arise due to the
inherent statefulness of container-based deployments. Specifically, stateful LiMis do not effectively
remove malware from the service. Consequently, the ASP reset for malware and backdoor-related
threats, as well as the associated LiMi MTD action reward, were removed. Only network-based at-
tacks, such as reconnaissance and DDoS, are subject to ASP resets. Furthermore, the model incor-

porates a budget for LiMis and reinstantiations of CNFs. Based on performance measurements from
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both MOTDEC (for stateless VNFs) and ContMTD (for stateful containers), a budget was estab-
lished for the number of operations permissible per service, assuming a 99.95% monthly availability
guarantee.

To enhance training efficiency, two distinct variations of the MOMDP were designed and evalu-

ated:

1. Episodic task: Despite the inherently continuous nature of the MTD management and or-
chestration task, the training process was transformed into an episodic framework. Each episo-
de terminates at the end of the month or upon depletion of the MTD actions budget. The
rewards for the remaining period are calculated and assigned in the final timestamp of the
episode. This approach significantly increases the number of "months” experienced by the

agent within a given training period.

2. Continuous daily budget task: The training process remains continuous, but the MTD ac-
tions budget is divided into daily allotments. This constraint prevents extended periods of
inactivity, thereby accelerating model convergence. However, this restriction may limit the
exploration of diverse MTD strategies, potentially leading to sub-optimal solutions. Despite
this potential limitation, this variation was included in the evaluation, as preliminary observa-
tions suggested that optimal solutions often exhibit a frequency of at least one MTD action

per service and per day.

These variations effectively address the issue of ineflicient training in the original MOMDDP, where
the agent often spent significant time selecting actions that would not be executed due to budget
constraints. This not only wasted computational resources but also hindered the agent’s ability to

learn long-term strategies, as a substantial portion of the training time was effectively unproductive.

4.6.3 MTDFED IMPLEMENTATION

MTDFed’s Python implementation uses the Flower FL framework [166], providing secure aggre-
gation and differential privacy features. Differential privacy further prevents FL participants from
exposing their local models to the aggregation server, i.e. the ICP, which is assumed to be also a net-

work operator and a participant of MTDFed for federated MTD strategy optimization.

4.7 MERLINS OVERVIEW AND KEY TAKEAWAYS

This section outlines the MERLINS methodology, detailing the phases, components, functionali-

ties, and interfaces required for a manageable closed-loop orchestration of MTD operations. This
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approach introduces an uncertainty-based security layer to networks, which have become increas-
ingly flexible with the advent of NFV and softwarized networks. This work is relevant in identifying,
based on the highly regularized and standardized telecommunication ecosystem, how to integrate an
additional proactive security layer without requiring changes to the defined architectures, such as the

NFYV, and rather, using the NFV standard to enable it.
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Figure 4.18: Overview of solutions covering the MERLINS HLA.

The MERLINS HLA can be further extended to incorporate new MTD actions or address addi-
tional requirements. For instance, the explainability component conceptualized in the HLA at the
DML layer was not implemented in this thesis due to the limitations of the scope defined by the
research questions (RQs). Nonetheless, the solutions cover the most critical components of the
MERLINS layers, providing a functional implementation of the HLA, as illustrated in Figure 4.18.
Here, each solution addresses one or more HLA components. For instance, MOTDEC implements
the NBI, infrastructure configuration, monitoring, VM migration, and the relevant MTD controller’s
operations, while ContMTD implements the MTD controller’s operations focused on container mi-

gration.
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The contributions outlined in this chapter provide answers to all the RQs under investigation in
this thesis: RQi1, RQ2, RQ3, and RQ4. RQu is answered with the MOTDEC, TopoFuzzer, and
ContMTD solutions, providing different types of MTD actions targeted at different threat scenarios
and with different enforcement costs. RQ2 and RQ3 are addressed with the OptSFC and MTDFed
solutions, which define a formal modeling of sG/BsG NFV-based networks as a MOMDP. The
model is utilized for training and near-real-time decision-making of MTD strategies using deep-RL.
Finally, RQ4 is answered with the MTDFed solution, designing and implementing a multi-tenant
distributed approach to OptSFC, leveraging secure and privacy-aware FL.

The following chapter (Chapter 5) further elaborates on the answers to these RQs with the evalu-

ations and discussions of each proposed solution.
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Evaluations and Discussions

HIS chapter evaluates the solutions implemented within the MERLINS framework. The primary
T objectives of such evaluations are to assess the feasibility of a cognitive MTD framework like
MERLINS in orchestrating novel MTD mechanisms in Telco Cloud environments, demonstrate its
practical application within a realistic §G testbed, and provide measurable results for each imple-

mented solution following the structure depicted in Figure 5.1.

While the testbed used in this thesis is built upon a G core (6G standards being not developed yet
at the time), its architecture is deliberately aligned with the evolutionary trajectory of Telco Cloud
networks. The infrastructure relies on the key cloud-native, software-defined, and fully virtualized
principles that constitute the foundation for 6G’s anticipated architecture, further characterized by
network function management through Al-driven orchestration systems. Thus, by evaluating the
orchestration of MERLINS within this environment, we are validating the MTD security paradigm
against the operational agility required for the software-driven, Al-controlled, and zero-touch net-

works of the future.

Hence, the remainder of this chapter is organized as follows. Section §.1 presents the 5G testbed
developed for this thesis to evaluate the MERLINS framework. Section 5.2 evaluates the MOTDEC

solution, focusing on the performance of soft and hard MTD actions (detailed in Section 5.2.1 and
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Section 5.2.2, respectively). Section 5.3 evaluates the ContMTD solution, with a specific focus on
optimizing the LiMi for microservices and interdependent CNFs. Section 5.4 evaluates TopoFuzzer’s
performance in the handover of TCP and QUIC-based connections during MTD operations. Sec-
tion 5.5 presents the results of strategy optimization achieved by the OptSFC solution, while Sec-
tion 5.6 evaluates the MTDFed solution. To conclude, Section 5.7 summarizes the key findings and

conclusions drawn from this chapter.
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Figure 5.1: Structure of the evaluation with respect to the MERLINS solutions.

5.1  $GTESTBED

Fig. 5.2 illustrates the topology of the 5G testbed where we evaluated the MERLINS framework. It
comprises two cloud environments, operated with OpenStack; one for the Edge and Radio Access
domains, termed “Edge NFVT’, and another for the Core domain, i.e., the “Core NFVL” This deploy-
ment implements a distributed UPF architecture, where UPFs are co-located with the base stations
(gNBs) in the Edge domain. The Edge NFVI includes Radio Access elements (5G UEs and gNBs)
and Edge Cloud elements (the UPF and a VNF that provides an application service to connected
users). The Core NFVI hosts the control plane of the 5 G Core Network, the subscriber database, and
generic VNFs for service provision. The Core NFVI also hosts the Katana Slice Manager [140], and
the NFVO implemented with OSM. The proposed solutions implemented in the MERLINS frame-
work are also hosted in the core NFVI. In addition, the TopoFuzzer is deployed at the Edge NFVI.
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This deployment allows emulating a distributed UPF architecture, where the UPFs are co-located

with the gNB on the Edge domain.
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Figure 5.2: 5G Testbed Deployment for MERLINS evaluation.

The 5G Core is implemented with OpensGS [167], an open-source 3 GPP Release-16 compliant
5G core. OpensGS provides the following network functions as discrete services, allowing the sepa-
ration of the control and data planes: (i) AME, (ii) SMF, (iii) UPF, (iv) AUSE, (v) NRF, (vi) UDM,
(viii) PCF, and (ix) NSSF.

The RAN and mobile UEs are implemented by UERANSIM[168], an open-source UE and gNB
simulator. The 5G architecture is Standalone (5G SA). UERANSIM connects to OpensGS via a
control interface with the AMF and a user interface to the UPE. The UEs and the gNBs connect via
a simulated radio interface. UERANSIM does not support signaling procedures in the PHY, MAC,
RLC, and PDCP layers. It focuses on protocols found in the RRC layer and above. However, this does
not affect evaluation results, since the focus is on the operational cost of MERLINS MTD actions,

which is reflected in the QoS in the application layer. Unlike actual hardware equipment, UERAN-
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SIM allows the deployment of a significant number of virtual UEs to test the solution’s scalability

under an increasing network workload.

ETHICAL CONSIDERATIONS:

All the experiments performed in this testbed follow ethical norms and considerations about privacy
and handling of sensitive data. The user traffic generated is entirely artificial and does not correlate to
any activity of real users. Simulated attacks, such as malware infection and C&C remote control, are

performed within the limits of the isolated 5G testbed built for this thesis.

5.2 ORCHESTRATING AND ENFORCING MTD Actions usiING MOTDEC

This section presents the results obtained from MOTDEC, specifically, from the evaluation of the soft
MTD actions and the hard MTD actions implemented and tested on the testbed.

5.2.1  SOFT MTD AcTioNs: EXPERIMENTS AND RESULTS

To evaluate the performance of soft MTD actions, specifically IPv6 address and port shuffling [ 139],
experiments were conducted on a varying number of client-server (C-S) pairs, with servers being
VNFs performing the connection shuffling for MTD.

The performance was assessed using a combination of tools, namely iperf, for measuring the bi-
trate, ping, for measuring the RTT, and Dynamic Adaptive Streaming over HITP (DASH) [169],
for measuring data stream performance. Each performance metric was measured 10 times, and the
mean values were calculated to account for variations inherent in the network infrastructure. The
tool iperf3 was used to create streams inside the SDN infrastructure and measure the overall band-
width of TCP and UDP connections for different numbers of hosts. To ensure consistent results,
both TCP and UDP connections were conducted at a fixed bitrate of 2 Gbps, thereby minimizing
potential variations in UDP performance. Each iperf3 run lasted 200s. To ensure proper initializa-
tion of iperf3, the analysis did not consider the first 100 s of each evaluation run. This approach
allowed sufficient time for iperf3 to stabilize and provide accurate performance measurements.

With the iperf3 traffic running in the background, the RTT was measured using the ping command
being run continuously for 100 s. The average latency over this duration was used for comparison. To
conduct practical performance measurements at the application layer, the DASH streaming protocol
was utilized along with the GPAC tool, again with the iperf3 traffic running in the background. GPAC

creates streaming-ready files from media content and provides an integrated client for viewing and
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Figure 5.3: iperf3 TCP evaluation with 1, 4, and 100 servers (each with the corresponding
number of clients).

analyzing the streamed media [170]. The media to be streamed is a 7-minute-long video placed on
one of the servers acting as a Web server [171]. The client then connects to the Web server, which

sends the stream data with the additional meta files to the client.
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REsuLTs

The TCP and UDP columns in Table 5.1 are generally coherent, but an interesting observation is
that the RTT values decrease as the number of active iperf streams increases (blue highlighted). One
possible reason for this is the CPU scheduler’s optimization, which reduces context switches and,
therefore, prioritizes the Open-VSwitch (OVS) forwarding process over other processes. It is also
visible that the overall iperf3 bit rate for the UDP case performs better than TCP if the load on the
system does not rise.

There is a significant decrease in the DASH video stream’s quality for case 8S-8C when compared
to case 1S-1C and 4S-4C, visible in Table s.1. This is due to the fact that the load on the system with
sixteen vCPU cores rises due to the number of iperf3 sessions and therefore the DASH video stream
performance decreases. Consequently, unpredictable behavior of the performance arises, which can
also be seen on the iperf3 bit rate values for the 8S-8C case (yellow highlighted) and in Figure s.3. The
overhead of the proposed solution is minimal, as we assume that CPU scheduling is significantly more
effective in performance simulations. It is also evident that the Port Shuflling technique negatively
influences the performance of the GPAC DASH video stream use case (green highlighted). This ob-
served phenomenon might be due to the addition of an extra layer. In IP shuffling, only the L3 header
values (such as the checksum) are altered. When port shuffling is active, the L4 header (including the
L4 checksum and fragmentation) is also involved. Consequently, in a heavily loaded environment,

this can significantly decrease performance.

TCP / UDP PERFORMANCE

Regarding the TCP performance, the no MTD mode is, as expected, the most stable variant, which is
visible in Figure 5.3. In Figure 5.3, itis also visible that all modes have an increasing number of outliers
because of the unpredictable behavior once the load of the system rises, as mentioned in Section §.2.1.
The performance gap remains marginal when both IP Shuffling and Port Shuffling are implemented,
compared to when only one of them is enforced. The results in Figure 5.3 with 100S - 100C exhibit
higher variations across all modes due to the presence of outliers. However, they also demonstrate
similar performance levels for all modes, suggesting that the overhead of the MTD shuffling method
is minimal when the system is subjected to elevated traffic (i.e., iperf3 traffic in this case). UDP results

share many similarities with their TCP counterparts and are, thus, omitted in Figure s.3.



Table 5.1: Performance measurements for the soft MTD actions (C: Client, S: Server. The
reported bit rates are average values per C-S pair).

C Mod Ping RTT DASHvideo | iperf3bit
ase ode [ms] stream bit rate | rate [Gbps]
[Mbps]
TCP* | UDP? | TCP* | UDP?* | TCP ‘ UDP
no MTD || 0.0745 | 0.055 | 1295 1491 1.494 | 1.684
1P 0.05§ 0.052 | 1450 1630 1.509 | 1.708
15,1C
port 0.051 0.055§ 159 285 1.402 | 1.781
IP+port 0.055 0.051 147 266 1.392 | 1.583
no MTD || 0.065 - 1545 1735 1.401 | 1.672
1P 0.052 | 0.048 1588 1604 | 1.402 | 1.547
45,4C
port 0.051 | 0.054 213 324 1.409 | 1.517
IP+port - 0.053 237 313 1.419 | 1.542
no MTD 1350 1051 1.546 | 1.557
1P 1078 1061 1. 1.598
8S,8C 7 374 59
port 493 486 1.502 | 1.465§
IP+port 421 421 1.416 | 1.542

*The TCP and UDP columns under “Ping RTT"” and “DASH video stream present the”
measurements with the TCP and UDP iperf3 traffic running simultaneously in the background.



Table 5.2: Parameters Used in Section 5.2.1.

Parameter | Definition

N, Average number of attempts needed to guess the
address

N, Average number of attempts needed to guess the
port

Number of addresses in the address space

Number of ports in the port range

Shuffling interval in seconds

Scanning rate (scans/seconds)

n

m

I

S

T Time to guess the address/port in seconds

(X) Probability of guessing the correct address/port

PROACTIVE SECURITY GAIN

To analyze the security impact of the scheme developed, both theoretical and simulated approaches
are applied. The security of the targeted system is measured with no MTD, with only IP Shuffling,
with only Port Shuffling, and with both MTD techniques combined. The parameters used in the

formulas are listed in Table 5.2.

Case 1: Undefended Network — We determine the average number of attempts required by an

attacker to correctly guess addresses or ports in a non-MTD network as N, = “andN, = N, + 7.

In the context of port scanning, it is assumed that the port can only be identified once the IP address
of the device is known. The time required for an attacker to make an accurate guess of the correct
address is then T = & for the average case and T = % for the worst case. Similarly, the duration for

an attacker to accurately guess the correct portis T = N? for the average caseand T = { + ¢ for the

worst case.

Case 2: Network with MTD - In the context of MTD, an additional metric is introduced and
denoted as “z,” which is calculated as the reciprocal of the number of shuffling operations performed

during a scan. This quantity is defined by the following equation:

_S*I
oon

z



The likelihood of correctly guessing the IP address in an MTD network, where only IP Shuffling is
implemented, is as follows:
P(X)=> z(1—z)
y=1
In this formula, y is defined as the current number of utilized full scans. The outcome of this formula
will approximate a value at which the probability of correctly guessing the address/port becomes
confident, with the speed of convergence depending on z and y. To determine the average number of

attempts required for an attacker to guess the address correctly, the following formulas are utilized:

=n since P(X) =1

The duration it takes for an attacker to guess the correct address successfully is:

Average case: T = N? and Worst case: T = Never

These calculations are based on the assumption that a single source address is utilized for scanning.
However, when multiple sources are involved in scanning, the necessary number of attempts also
becomes valid. Nonetheless, the scanning durations should be divided by the number of sources
involved.

In this context, P(X) equals 1 when z falls within the range of o to 1 (0 < z < 1), which is the case
for shuffling. Consequently, it appears that shuffling effectively doubles the value of N, compared to
the scenario without MTD. Given that Port Shuffling operates on similar principles, the combination
of IP Shuffling and Port Shuffling results in a fourfold increase in N, compared to the scenario without

MTD. Interestingly, P(X) and N, remain unaffected by the scanning rate or shuffling interval.

An intriguing observation is that, in the worst-case scenario, an attacker may never successfully
identify the correct IP or port. Several numerical simulations have been conducted to determine how
many full scans are required for a successful attack when IP Shuffling is implemented. As depicted in
Figure 5.4, the results indicate that, on average, an additional full scan is needed to find the target host
with an 87% probability. After a third full scan, the success probability is above 95%. Remarkably,
this outcome remains consistent regardless of the scanning rate or shuffling interval. Furthermore,
attackers typically halt the scanning process if a full scan yields no results. Consequently, the ac-
tual value of shuffling may be the act of discouraging the attacker from rescanning the network when

nothing is found with the first full scan.
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Figure 5.4: Cumulative probability to find a moving host per number of full address-space
scans with activated soft MTD actions. In contrast to these results, without soft MTD actions,
the first scan is always successful (i.e., 100%).

ILLUSTRATIVE CASE STUDY: IPv6 NETWORK WITH /104 MASK

This section evaluates the soft MTD action security gains in a specific scenario by applying the equa-
tions from Section §.2.1. An IPv6 network with a /104 mask is assumed, and IP and Port Shuffling
are enabled. This allows for 16° unique addresses. An attacker has gained access to the network and
is trying to locate the IPv6 address of a device called srv-1. By using N, = % = &Z_‘ , the attacker
would require 8,388,607.5 attempts on average to locate one of the vulnerable servers. Nmap esti-
mates a scan of all 65,536 ports to take 21 min. By dividing 21 minutes by the number of ports, a
scan of a port takes roughly 0.02 seconds. The same value is used for the IP scanning operation since
the scanning rate is similar to port scanning in that case, as explained above. If no soft MTD action
is performed, the attacker would require 167,772 s or 46.6 h to execute the 8,388,607.5 attempts to
scan IP addresses of an undefended network. If only IP Shuffling is activated, it takes 93.2 h, doubling
the 46.6 h. This is long but still feasible for an attacker to find, for instance, a server IP address in the
network. However, if port shuffling is also activated, the attacker must scan 65,536 ports to see if an
IP address is communicating. Now, the attacker needs 697.3 years on average to locate the correct IP
address and port number. Obviously, the minimum time (i.e., the best-case scenario for an attacker)

to find a server is still 0.02 s.

5.2.2 HARD MTD AcTIONS: EXPERIMENTS AND RESULTS

This evaluation, as illustrated in Figure s.5, showcases the integration of MOTDEC to OSM and

Katana in a realistic 5G network and has a practical demonstration of hard MTD actions enforced
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on VNFs, focusing on a reactive security scenario against a malware infecting a stateless VNF service
and tampering its filesystem. The VNF service implements a generic application exchanging data
with UEs through its REST API interface, which can be HTTP/2 or HITP/3 based, and is executed
in a container within the VM, the latter representing the VDU of the VNF, deployed in OSM.

It is important to note that this section strictly focuses on MOTDEC’s evaluation of stateless VM-
based VNFs, in which the QoS overhead occurs only due to the service downtime from the traffic
redirection and connection handover handled by the TopoFuzzer module. Hence, these results di-
rectly depend on the results of TopoFuzzer, additionally detailed in Section 5.4. Finally, no use of a
cognitive decision-making system in OptSFC is used, as this is evaluated separately in Section s.5,
and a static security policy is used instead.

Hence, OptSEC is deployed as a reactive system interfaced with Solidshield Systemic, a tampering
detection system performing binary integrity checks at run-time [172]. A proof-of-concept C&C
malware, for which remote control is emulated with a REST API interface, is installed in an edge
VNF of the 5G testbed. When triggered, the PoC malware modifies the binary code of the running
VNF application, simulating a tampering attack (i.e.,, upon receiving the request, the VNF application
corrupts its binary). As Systemic detects the attack, OptSFC receives the attack alert, which enforces
a static security policy for the specific threat. This static policy re-instantiates the application at the
container level first, then at the VM level, in case the attack is detected again, and finally, if the attack is
performed again, the VNF is migrated to the other NFVI. The first MTD action neutralizes the attack
if the malware is installed in the application’s container. The second MTD action re-instantiates the
VNF, removing the malware, while the third addresses issues where the NFVI node would be the

attack vector for the malware infection.

In this scenario, the focus is on evaluating the feasibility and potential QoS overhead of MTD

migration and re-instantiation actions on stateless VNFs. To this end, a test is conducted on 10
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Figure 5.5: Evaluation setup for MOTDEC hard MTD actions.
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UEs simultaneously communicating with the target VNF during the MTD operations. Two types
of client connections are tested: HITP/2, based on the TCP protocol, and HITP/3, based on the
QUIC protocol, built on UDP. The QoS overhead is evaluated based on the communications’ la-
tency and packet loss rate during the MTD actions. Results show that the highest MTD network
overhead occurs with HTTP/2 and TCP connections, with an average 7% increase in the packet loss
rate in a one-second timeframe for re-instantiations and 33% for migrations, resulting in an average
service downtime of 330ms. This overhead reflects the performance of the TopoFuzzer connection

handover, also detailed in Section 5.4.

Ultimately, Hard MTD actions on the attacked VNF with an authenticated uninfected image of
the service, coupled with the seamless handover of client connections performed with TopoFuzzer,
moves both UE connections and the VNF application and neutralizes the tampering attack’s effects.
Moreover, to iterate the attack, the attacker’s effort increases drastically as they have to re-infect the
VNF, possibly a non-trivial task. This gives the service provider more time to find the attack vector

and rectify it.

5.2.3 DISCUSSION AND LIMITATIONS

The evaluation on MOTDEC soft MTD actions shows that IP shuffling in the large IPv6 address space,
combined with port shuffling, creates the entropy needed to obfuscate and slow down attackers. Per-
formance and security-related results indicate that it is applicable in practical use cases. However,
further research is needed to analyze different factors on the shuffling performance. A concern is that
clients should know how to communicate with the shuftled host. This means that signaling is needed
for distributing dynamic connection information, or an existing dynamic DNS implementation must
be extended to save port numbers in DNS records. Another concern is the “Address Block Owner-
ship”. If the defender does not own an IPvé6 block, they can use a purely local network if the hosts do
not need an Internet connection. In the other case with an Internet connection, they can use a single
address combined with NAT for IPv6, e.g., NAT66.

The evaluation on MOTDEC hard MTD action demonstrates a simple yet powerful mechanism for
removing backdoors and potentially disruptive malware from a stateless VNF. However, as stated on
previous occasions, such an operation is not feasible for stateful services, where maintaining contin-
uous operation and state consistency is critical. The ContMTD solution, evaluated in the following
section, is a natural continuation addressing the broader challenges of protecting stateful services by

minimizing downtime during MTD actions and ensuring state consistency.
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5.3 ORCHESTRATING MICROSERVICES LIVE MIGRATIONS USING CONTMTD

This section presents the results obtained from ContMTD, the variations made to the testbed to eval-
uate the solution, the performance of its regression models, as well as the outcomes of applying the
ContMTD scheduling algorithm to microservices applications. We compare the performance mea-
surements of ContMTD against those of the methods implemented in CloudHopper [56], which
represent the current state of the art in parallel container LiMi. Finally, we showcase the preliminary
security evaluation of ContMTD against two main threat models: side-channel attacks and unde-

tected malware infection and propagation in a multi-tenant multi-service provider scenario.

EXPERIMENTAL SETUP

n Openstack core n Openstack edge

(bare-metal) (bare-metal)

openstack openstack

{») source node (VM) destination node (VM) (&}
— ssh_tunnel =~ — '
El . rsync 7 :i

runC runC

- (R CR)L
-»{ container 1 D R s ——-{-» container 1

/i
/

Ll container 2 stat container 2

Locust | ContMTD
Learn

;"llcontroller node (VM) (5]

container 3 container 3

e
Y
Ul
:
LR
\

Figure 5.6: Cloud infrastructure used for ContMTD's experiments.

The migration experiment is conducted between the code and edge OpenStack VIM:s of the sG
testbed, but without passing through the NFV MANO and network slice manager. This is because
OSM MANO orchestrates CNFs using Kubernetes, which does not enable the LiMi optimization
algorithms such as pre-copy, post-copy, and hybrid. Thus, a separate controller that manages runC
containers is implemented in ContMTD alongside the MOTDEC controller for VNFs. Two Ubuntu
22.04 VMs are deployed on separate VIMs, representing the microservices orchestrator, built upon
the runC container runtime. Each VM is provisioned with 4 virtual CPUs (vCPUs), 8 GB of RAM,
and 80 GB of SSD storage and is interconnected with a 10 Gbps network link. The CRIU library is
used with runC to perform the pre-copy, post-copy, and hybrid migration optimizations, while at the

orchestration level with Docker and Kubernetes, CRIU is still integrated with limited optimization
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support. Finally, we run an additional Ubuntu VM with 2vCPUs, 4GB of RAM, and 40GB of SSD
storage. This VM hosts the ContMTD framework and its modules, with the exception of the LiMi
clients and servers of the LiMi controller module. These are installed in the interchangeable source

and destination nodes to enforce the CRIU migration both ways.

5.3.1 EXPERIMENTS AND RESULTS

After training the regression models estimating the downtime and total migration time on the created
dataset, we evaluate each model individually and then evaluate the LiMi method classifier of Con-
tMTD that uses the downtime regressor against the statistical model and the CloudHopper method,
the latter simply using pre-copy on all selected containers. The results of the evaluation are presented
in Table 5.3. The regressor models are evaluated using the coefficient of determination (R2) and the
Mean Squared Error (MSE), defined as follows:

> i =3

R ===
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1 — o
MSE = ;;()’i — )

where y; are the observed values, y; are the predicted values, y; is the mean of the observed values, and
n is the number of observations. The results (shown in the last two columns of Table 5.3) indicate
random forest and NN as the regression models with the best performance. Results also reveal that
the total migration time is much easier to predict with a very small error margin, down to 1.07 seconds
for random forest and NN, compared to the downtime, with 3.36 seconds for the same models, based
on the square root of MSE given in the table.

The classifiers’ accuracy is calculated using 10-fold cross-validation, each fold using a different 10%
of the dataset as the test set, excluding it from the training phase. We also use stratified folds, ensuring
that each fold has a similar balance of container types as the original dataset, avoiding biases that could
be introduced by imbalanced classes when splitting the dataset.

The ground truth for the accuracy calculation is the LiMi method with the lowest downtime based
on the average values per container category of the test set used at each fold. The results (listed in the
first column of Table 5.3 ) show that the Bayesian ridge performed poorly, while the other three classi-
fiers, namely random forest, SVR, and neural network performed closely, with the heuristic classifier
slightly behind them. Note that an accuracy of 49-50% here does not represent a random guess, as

would be the case with a binary classification problem. In this context, given that the choices of the
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model are four, the success probability of a random guess would be 25%. In the following evaluations,
we decided to use the random forest regressor as the ML-based method while using the heuristic
method as a second proposed model. Random forest’s regressor model is preferred over SVR for

being more accurate and over NN for having a considerably shorter inference time.

Table 5.3: Comparison of regression and classification models’ performance against the Cloud-
Hopper baseline and the proposed heuristic model across two different benchmarks.

Method Classifier’s | Downtime | Total time
accuracy (%) | MSE | R* | MSE | R*
Heuristic 46 n.n. n.n. n.n. n.n.
CloudHopper 24.3 nn. | nn | nne | ona
R.Forest 49.2 11.3 | 0.80 | 1.13 | 0.9§
SVR 47.8 15.0 | 0.73 | 1.33 | 0.94
NN 47.3 11.3 | 0.79 | 1.16 | 0.95
B. Ridge 23.5 23.1 | 0.59 | 5.55 | 0.76

EvaruatioN oF CONTMTD wiTH BENCHMARKING CONTAINER APPLICATION

To conduct a generalized performance evaluation of ContMTD across diverse scenarios, we use the
benchmarking container application described in Section 4.3.5 and test it on multiple microservice
setups. Here, we consider a simple microservice-based web application with four components: back-
end, front-end, database, and cache. For the sake of simplicity, we assume a single-logic applica-
tion, enabling us to assign one container for each component. Even in this case, due to the expo-
nential growth of possible combinations of resource load configurations (34 per container), explor-
ing all combinations would be computationally prohibitive. Instead, we randomly sample 11 load
configurations for each container in a four-containers microservice and generate an input space of
11* = 14641 simulated scenarios.

For each scenario, we test three methods (CloudHopper, ContMTD with the heuristic classifier,
and ContMTD with the RF classifier) across 20 trials and report the number of times each method
prevails (i.e. obtains a lower LiMi downtime). As depicted in Figure 5.7, the heuristic based on sta-
tistical analysis outperforms the other methods by achieving the best results on 28.21% of generated
scenarios, while the random forest regression model and the state-of-the-art method achieve the best
results on 4.19% and 4.96% of the scenarios, respectively. However, in 62.65% of the scenarios, the
heuristic method and the regression model result in a tie, both achieving the same results and out-

performing the current state-of-the-art method. Moreover, the average downtime reached across
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Figure 5.7: Evaluation of different migration techniques for randomly configured microservice
applications.

Table 5.4: Evaluation of ContMTD against CloudHopper for the web microservices application.

Scenarios | CloudHopper | ContMTD Improve (%)
Mean | S.D. | Mean | S.D. | Mean S.D.
LiMi time 19.56 1.19 17.38 | 0.46 | 11.1% | 60.86%

Downtime | 12.16 15.23 7.15§ 4.00 | 41.17% 73.7%

Misalign 9.11 0.96 10.71 | 0.45 | -17.5% | 53.4%

scenarios with the heuristic method, the regression model, and the current state-of-the-art approach
is 14.3, 14.88, and 24.85 seconds, respectively. This further information indicates that the heuristic
method and the regression model achieve a downtime reduction of 42.45% and 40.12%, respectively,

compared to the current state-of-the-art solution.

EvaruaTtioN oF CONTMTD wiTH A WEB MICROSERVICES APPLICATION

To investigate the applicability of ContMTD in a real-world microservices scenario, we deploy a
WordPress microservices-based application consisting of three containers: a WordPress back-end
(BE), a Nginx gateway (GW), and a MariaDB database (DB). The GW acts as the user interface, in-
teracting with the end-users and relaying their API requests to the BE, while the BE instance queries
the DB instance and provides a response for the corresponding request. Moreover, to generate net-
work traffic, we leverage the Locust app to simulate end-user requests for our WordPress application,
with a total frequency of up to 100 HITP requests/s. Furthermore, we allow each container within
the application to run a pidstat process, which monitors the resource consumption of the container,

and set it to provide the average CPU, RAM, and disk usage in the last 5 seconds prior to the LiMi.

120



In this experiment, our objective is to evaluate how effectively ContMTD is able to migrate an
entire multi-container application, aiming to obtain the following performance metrics: the service
downtime during the migration, the total migration time, and the misalignment of parallel LiMi of
containers. To clarify, the misalignment is defined as the time between the end of the first container
migration and the end of the last container migration. The ideal case is to have all the application

containers migrate simultaneously; hence, a lower misalignment means better results.

We perform 10 migrations each with ContMTD and CloudHopper, and we report the mean and
the standard deviation of the metrics as per Table 5.4. The results obtained show that ContMTD,
across 10 trials, significantly improves the service downtime compared to CloudHopper, with a re-
duction of 41.17%, from 12.16s to 7.15s. The standard deviation is greatly reduced by 73.7%, demon-
strating the greater robustness of ContMTD performance. Similarly, ContMTD’s total LiMi time
also improved by 11.1% compared to CloudHopper. Its stability is further illustrated with the vari-
ance of this metric as well: whereas CloudHopper produces a standard deviation of 1.19s for the
total LiMi time, ContMTD displays a smaller standard deviation of 0.46s, marking an improvement

of 60%.

Although ContMTD displays superior performance with regard to the downtime and migration
time, the results suggest that CloudHopper outperforms ContMTD in the migration scheduling part,
reaching alower misalignment value. A further investigation reveals that this discrepancy is due to the
different approaches employed by ContMTD and CloudHopper in the scheduling process. While
the former considers the resource usage of containers as the primary input, the latter focuses solely on
the container size to estimate the migration time. However, the containers used in the WordPress ap-
plication are identical based on the metrics monitored for resource consumption, all three displaying
”low” levels of CPU, RAM, and disk consumption, even under a higher traffic load (circa 200 HTTP
requests/s). In fact, only a very limited CPU spike to “medium” in the DB container is observed dur-
ing our experiments, which is not enough for ContMTD to make sophisticated decisions. On the
other hand, in terms of container size, the BE container is considerably bigger than the DB instance,
which is significantly bigger than the GW container. Such distinct container sizes within the appli-
cation allow CloudHopper to perform more effective scheduling, thus outperforming ContMTD in

this specific scenario.

The experiments conducted on WordPress deployment provide tangible findings for our research.
Nevertheless, we would like to emphasize that those tests explore only two container load configura-
tions, with the CPU usage of the DB container fluctuating between "low” and "medium” depending
on the user request rates. Since other metrics, such as RAM and disk usage, have a constant level

throughout the experiments, the generalization of our results is severely limited. For this purpose,
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Figure 5.8: ContMTD vs CloudHopper in migration scheduling on a sample scenario.

we compare the scheduling performance of ContMTD and CloudHopper in different scenarios from
Section s.3.1. Figure 5.8 illustrates a sample scheduling process for both ContMTD and CloudHop-
per. Apparently, both methods migrate the four containers in the same order (container 3, container
4, container 1, and container 2), but differ in determining migration start times, particularly for the
gateway container. Although ContMTD’s total migration time slightly exceeds the optimal solution,
it still outperforms the state-of-the-art in these scenarios.

These results suggest that, in addition to container size, the container load configuration also has an
impact on the LiMi performance. The improvement in this scenario over the WordPress case results
from the regression model employed by ContMTD, which captures the strong correlation between
container load configuration and the total migration time. Thus, ContMTD is able to predict the to-
tal migration time with a relatively low deviation, achieving an MSE of 1.13 seconds. Conversely, the
lower performance displayed by ContMTD in the WordPress scenario indicates a lack of considera-
tion for container size, which prevents the model from achieving better performance. This downside

needs to be solved at the dataset creation level, to be addressed in future improvements of this work.

DATA EXFILTRATION ATTACK

For this threat-based scenario, we assume a vulnerable multi-tenant cloud infrastructure enables mali-

cious attackers to use co-hosted containers to exfiltrate data from neighboring containers. This threat
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Figure 5.9: Changes in the data exfiltration rate with MTD.

is independent of the underlying vulnerability mechanism, which could target hardware-level flaws

(e.g, CPU cache side-channels and memory bus contention) or OS/kernel-level weaknesses (e.g,

container orchestration misconfigurations and privilege escalations). We assume using four clusters

from different cloud providers, each cluster composed of five nodes. Single containers can be mi-

grated independently between nodes of the same cluster and provider. However, migrating to other

providers requires all microservices related to a single application to be migrated in parallel. We mea-

sure the amount of exfiltrated data when 25%, 50%, and 75% of the providers are vulnerable (respec-

tively, one, two, and three providers out of four). We also adopt two assumptions strengthening the

attackers’ capabilities: 1. attackers can resume the data exfiltration when an application is migrated
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back to an infected cluster, and 2. attackers can aggregate exfiltrated data from different clusters for
the same application. Finally, we consider a strict SLA with 99.95% of availability guaranteed, as pro-
vided by cloud providers such as Google and AWS [173]. If we allocate 50% of this downtime for
LiMis, while the remaining downtime is used for eventual malfunctions and disruptions, it means that

over the course of a month, a maximum of 10.95 minutes of downtime per application is tolerated.

When considering the ContMTD performance on the WordPress scenario presented in Table 5.4,
this translates into a budget of 92 LiMis per application per month when using ContMTD with the
heuristic classifier. The budget for CloudHopper’s only pre-copy strategy is 54 application LiMis per
month. We also assign a criticality value to each container running in the application scenarios, rep-
resenting the value of the data exfiltrated: the database criticality is set to 3 (i.e. highly critical), the
back-end and cache containers are set to 2, while the gatewayis set to 1 (i.e. less critical). For the MTD
strategy, we consider two different MTD policies: a random policy and an expert-knowledge policy.
The random policy selects the microservices application, the new destination for migration, and the
migration frequency randomly until the monthly LiMi budget expires. The expert-knowledge algo-
rithm applies a simple greedy algorithm that migrates the microservices application with the highest
criticality. It also migrates between clusters in a round-robin fashion to equate the level of exposure
to all the providers. The time-frequency between migrations is set to be homogeneous throughout

the month’s duration.

Figure 5.9a presents an exposure to data leakage of a microservices application and the time re-
quired to exfiltrate all data from each container in the host, with an exfiltration rate of 1kbps (such
as with Prime+Probe and Flush+Reload cache-based side-channels [174]). The figure shows a 6-fold
increase in the time required to exfiltrate all app data when using MTD compared to when no MTD
strategy is applied. In this measurement, the higher LiMi budget per month of contMTD vs. Cloud-
Hopper improves the exfiltration rate reduction by 10-fold compared to when no MTD strategy is
applied. The best result is obtained when using the “expert knowledge” MTD policy with ContMTD,
reaching a 16-fold reduction in the exfiltration rate. Nonetheless, we clarify that such improvements
can vary extensively based on two considerations: 1. When starting an application, there is a first
probabilistic factor of whether the cluster is infected or not. When assuming the infections are static,
applications without MTD deployed in secure clusters are protected from data exfiltration. On the
other hand, with moving containers and the assumptions of attackers’ capability earlier stated, all ap-
plications will eventually see all of their data exfiltrated. 2. The ratio of infected clusters k over all
clusters n is directly relevant to the previous consideration, as the higher k is, the lower the chances

of an application being in a safe cluster. In fact, given a applications, the number of applications on
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infected clusters can be modeled as a binomial distribution: X ~ Binomial(a, S) Therefore, the
expected number of exposed applications is the mean of the distribution X, i.e., E[X] = a - ’ﬁ

When introducing the migrations of MTD, the long-term average probability that an application
is on an infected server remains the same, as observed in the results. Therefore, MTD only addresses
the problem of continuous exposure to an infected cluster. Noting z a certain migration frequency
over time ¢, the exposure duration of an application is Exposure time = ’ﬁ -£. This is shown in the short-
term measurements taken at the beginning of the data exfiltration process, depicted in Figure 5.9b,

where MTD can sensitively slow down the exfiltration rate in initial periods, critical to give more time

for the attack detection and/or mitigation.

STEALTHY MALWARE INFECTION

A preliminary evaluation demonstrates the benefits of incorporating stateless LiMis as a Moving Tar-
get Defense (MTD) mechanism to mitigate stealthy malware infection and propagation across inter-
connected containers. The same microservices application scenario, consisting of four containers, is
used in this scenario. The gateway API container is configured as a stateless service and is set as the ini-
tial infection point, allowing subsequent propagation to the other containers. This setup aligns with
the “statelessification” of exposed microservices described in Section 4.3.4. We define a threat model
based on widely-used gateway, back-end, cache, and database technologies, each vulnerable due to
using outdated versions. Each vulnerability is identified through the CVEs in the NIST NVD [151]
database. The attack graph for the application is built using the Common Vulnerability Scoring Sys-
tem’s (CVSS) [150] exploitability score to estimate the likelihood of container infection and to cal-
culate the timesteps required for the attacker to compromise all containers. Figure 5.10 outlines the
attack graph, where the starting state is denoted as S, and container states are labeled as GW (gate-
way), BE (backend), CA (cache), and DB (database). The graph edges represent attack vectors, with
each vulnerability linked to its corresponding CVE and CVSS exploitability score.

The threat model accounts for the increasing ASP as the attacker gathers more information over
time. Stateless LiMis of the GIW container counteract this by removing the malware from the con-
tainer at regular intervals, forcing the attacker to reinfect the GW and resetting the exploitation prob-
ability of attack vectors originating from the GIW to their initial CVSS-based values. We formulate the
time required for the attacker to compromise all containers without LiMi-based MTD. The probabil-
ity p of infecting a container at timestep ¢ is given by: p(t) = p(o) - (g)!, where gis the growth rate of
the attacker’s advantage over time and p(o) represents the probability of the container being infected

right after being deployed. The probability of not infecting a container at time tis 1 — p(t), and the
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Figure 5.10: The migration optimization workflow of ContMTD.

cumulative probability over time is the product of failed infection attempts at each prior timestep,
followed by eventual success. Thus, the time of infection can be approximated by summing these

probabilities up to 1,
t
| R ORGIES

which allows us to estimate the time for infection as:

t

T+ ag | [[—plo)-(g)) | =0
b \i=o
Now, the total time necessary to infect one container when no MTD is in place is formulated as the
sum of the time required to exploit each vulnerability leading to it. For instance, the expected time to
infect the database containeris Tpg = Ts—,ow + Tew—pe + Tps—sps, by introducing MTD. When
stateless LiMis are frequently applied to the GW container, the expected infection time approaches
; , effectively neutralizing the growth rate g and significantly slowing infection. In addition, since the
attacker continuously loses control of the GW container, progressing beyond it (i.e., to BE) requires
success in both S — GW and GW — BE approximately at the same time. Thus, with ContMTD
enabled, the expected time to compromise the database becomes: Tpg = Ts_.ew* Tew—pe+ Tps—DB
The results in Figure 5.9c show that as the frequency of gateway LiMis increases, the time required
for the malware to reach the database grows exponentially. Starting from a LiMi interval of eight
timesteps, the required time more than doubles, and with a LiMi applied every timestep, the time
increases by a factor of six. Given the very little overhead of stateless container LiMis compared to

stateful LiMis, a timestep could be as low as 5 seconds, with a downtime of under one second [138].
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5.3.2 DISCUSSION AND LIMITATIONS

In this section, we discuss the challenges faced and limitations of our framework and provide insight
into how ContMTD could work on a more generalized setup with fewer assumptions.

Dataset characteristics - One of the most visible limitations stems from the way our dataset is
generated. Due to the local cloud environment used for migrations, despite the similarity to real-
life infrastructures, our measurements lack the variety of system loads that could be encountered in
real-world cloud scenarios. Therefore, the actual time to complete a container migration in a produc-
tion environment might deviate from our dataset, depending on various factors such as the hardware
characteristics of the source and target nodes, the load on the physical or virtual machines that are
external to the load of the containers themselves, and even the container runtime environment. To
utilize ContMTD for a more realistic scenario and generalize its performance, a higher amount of
environmental data is needed for the ML training.

Optimization model - Another limitation of ContMTD lies in the constructed optimization prob-
lem for the microservice application scenarios. In our study, we primarily focus on two objectives:
1) minimizing the downtime for each container migration by determining the most suitable method,
and 2) scheduling the migration of containers within a microservice application such that the migra-
tion operations are finished approximately at the same time. Although these two goals do not have a
conflicting nature, combining them does not necessarily guarantee an optimal migration on the appli-
cation level. For instance, choosing the method with minimum downtime may actually increase the
total migration time for that container, causing a delay in the migration of the entire application. We
do not focus on this aspect during our study, since we only consider one independent microservice
application in our scenarios. However, in a real-world setup, it is likely that there are some inter-
application dependencies where the operation of one microservice relies on the existence of others.
In such cases, ContMTD needs to be configured to focus on the required goal, total migration time,
or other application-specific metrics for better optimization. The evident way to accomplish this is to
adjust the method selection process by training the regression model (or using the heuristic model)
on the targeted feature rather than on migration downtime values.

In relation to the previous limitation, ContMTD also has a limitation in its scheduling compo-
nent. During the migration experiments, we simply assume that the containers are completely in-
dependent and ignore any possible co-dependency, which is usually not the case in a real-world ap-
plication. Instead, components depend on each other for working properly, such as a back-end and
database containers. In this case, simply arranging the migrations to end at the same time may not be
the perfect solution in terms of total application downtime, and a more sophisticated approach needs

to be considered. However, there are existing solutions for scheduling inter-dependent tasks, such as
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the critical path method used in software engineering projects [ 175], which could be adapted to the
problem here. If the application has even more nuanced requirements, then we can treat it as a com-
plex scheduling problem, and common solutions such as genetic algorithms, simulated annealing, or

integer/linear programming can be integrated into the scheduling component of ContMTD [176].

5.4 CONNECTION HANDOVER OF NFs USING ToPOFUZZER

This section presents the tests performed on TopoFuzzer and the results gathered for the evaluation.
The analysis focuses on the QoS overhead caused by the traffic redirection in terms of bandwidth,
latency, and packet loss rate. TopoFuzzer is deployed in the 5G testbed as a VM-based VNF with
8GB of RAM and 4 CPU cores. Symbols for the measurement metrics are listed in Table s.5.

Table 5.5: Metrics and their symbols in TopoFuzzer experiments.

Symbol | Metric Symbol | Metric

pi Packet loss rate Oros Std. dev. in a 10s window
L Latency (R1T) Cly 95% confidence interval

xf x for direct conn. m, MTD reinstantiation event
x x for indirect conn. || m,, MTD migration event

5.4.1 EXPERIMENTS AND RESULTS

To evaluate the TopoFuzzer overhead on connection bandwidth, both TCP and UDP traffic are gen-
erated from a UE using Iperf3. As illustrated in Table 5.6, the average TCP bandwidth of direct
connections is 159 Mbps for both sender and receiver. UDP traffic sees an average bandwidth of 22§
Mbps, but is imbalanced with the full capacity for the sender and 138 Mbps for the receiver, which
also has an increased jitter of 0.042 s on average.

When using TopoFuzzer, the standard deviation of measurements gets higher by 14.18% for TCP
and 3.7% for UDDP, indicating slightly reduced performance. The average TCP bandwidth capacity is
measured at 157 Mbps for both sender and receiver, representing a negligible decrease of 1.25%.

The average UDP bandwidth capacity is instead 218 Mbps, also imbalanced due to the UPF per-
formance, with 222 Mbps for the sender (1.33% decrease) and 136 Mbps for the receiver (1.45%
decrease). Finally, the receiver’s jitter is 0.0455 s, representing an increase of 8.33% compared to

direct connections.

128



Latency Latency

1.01 1.0

o pf e pf
— 9 — 19

0.81 . 4
o} 0.8 o
, !

o
o

0.6 1

Latency (ms)
Latency (ms)

o
S

0.2 021

0.04 ¢ E B B 0.0+

T T v T v T T v v v v v
0 500 1000 1500 2000 2500 0 1000 2000 3000 4000 5000
Time (s) Time (s)

(a) Latency overhead and packet loss rate of (b) Latency overhead and packet loss rate of
TopoFuzzer when increasing UEs by ten every TopoFuzzer when increasing UEs by five every
five seconds up to 100 UEs. five seconds up to 100 UEs.

Figure 5.11: HTTP/2 QoS overhead.

To conclude, TopoFuzzer did not show any relevant overhead on the bandwidth in the 5G testbed
environment. However, what became evident during the tests is the importance of the allocated net-
working hardware resources and their capabilities. In our 5G testbed, the communication bottleneck
was the UPF, which manages the data plane communication both at the core and edge domains (each

domain with a different instance of the service).

Table 5.6: Average bandwidth for different traffic types.

Traffic type Avg. bandwidth | Avg. bandwidth Standard
Sender (Mbps) Receiver (Mbps) deviation

Direct TCP 159 159 8.95

Direct UDP 225 138 37.85

Indirect TCP | 157 157 10.22

Indirect UDP | 221 136 39.26

ToroFuzzer QoS OVERHEAD - HTTP/2 aND HITP/3

The first set of tests runs HITP/2 communication traffic to evaluate the QoS overhead based on la-
tency and packet loss rate metrics. The RTT is used to determine latency, while a request that does
not receive a response within one second is counted as a packet loss. When establishing 30 connec-

tions with different UEs, adding a different UE every s seconds, TopoFuzzer overhead on the RTT is
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4.5%, while for so UEs, this increases to 29%, from an average RTT of 23.384 ms to 30.35 ms. In both

cases, no packet is lost.

To test the scalability of TopoFuzzer, 100 connected UEs are deployed by adding 10 UEs simulta-
neously every 10 seconds. This leads to a rise in the RTT overhead, reaching 311% (test (a), depicted
in Figure 5.11a). We assume that the TopoFuzzer overhead is affected mainly by the simultaneous
connection requests rather than the total number of connected UEs, since packets are lost the mo-
ment ten new UEs establish their connections. This behavior may be caused by the conntrack func-
tionality used in TopoFuzzer’s proxies to map the connection request with the original destination
port, modified beforehand with a port forwarding rule to allow redirecting traffic from all the ports.
To test the hypothesis, we perform the same scalability test with up to 100 UEs, reducing the simul-
taneous connection requests to five. The hypothesis is confirmed, as the RTT overhead decreases
to 38% for the same number of connected UEs (test (b), depicted in Figure 5.11b). Moreover, we
observe a decrease in the number of packets lost, from 57 packets (in Figure 5.11a) to 6 packets (in
Figure 5.11b). RTT values with and without TopoFuzzer are the same most of the time (represented

by the overlap depicted in Figure 5.11b).

As TopoFuzzer can also redirect communications over the QUIC protocol (built over the UDP
transport protocol), the QoS overhead is also tested on the recently standardized HTTP/3 protocol.
The first noticeable difference compared to HITP/2 is the reduction of the latency overhead, with
4% when having 50 UEs connected (against the previous 29% in HIT'P/2) and 0.9% when having 70
UEs (compared to 37% in HITP/2). With and without TopoFuzzer, the testbed could not scale to
100 HITP/3 UEs, assuming that the cause is the additional TLS encryption the VNF has to support
with its limited resources (1 vCPU and 512MB of RAM).

Another observable difference is the absence of the aforementioned limitation on the number of
simultaneous connection establishments: instead of seven simultaneous connections with HITP/2,
the number of connections with HTT'P/ 3 has to be over 48 to start observing packet losses. However,
this limit is the same when running direct HTT'P/3 traffic (i.e., without TopoFuzzer in the middle),
indicating that it might have reached the limits of the resources allocated for the VNF. Hence, the
latency gap between direct and indirect communication does not increase, as observed in Figure 5.11a
for HITP/ 2.

To conclude, while it is already demonstrated in previous works [177] that QUIC generally out-
performs TCP in QoS evaluations, this work also demonstrates a reduced complexity and lower over-

head of redirecting HTT'P/3 traffic compared to HITP/2 for MTD. Moreover, it shows better man-
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Figure 5.12: QoS overhead of HTTP/2 traffic redirection.

agement of instant surges in connections, motivated by the absence of tracking connections at the

transport layer.

QoS OVERHEAD FOR RE-INSTANTIATION AND MIGRATION OF L1vE VNF: TCP anD UDP

After measuring TopoFuzzer overhead with respect to direct connections, its redirection overhead is
evaluated when performing re-instantiations and migrations of the edge VNF using MOTDEC. Tests
alternate between re-instantiating and migrating operations on the VNF 30 times using HTTP/2 and
30 times using HTT'P/3. Figure 5.12a shows the measured traffic of a VNF during a [re-instantiate —
migrate — re-instantiate ] sequence.

The measurements during the migration show the QoS differences between the core and the edge
locations. The edge has better latency (second half of the measurements in Figure 5.12a) due to its
proximity to the UE. Concerning the QoS overhead of Hard MTD actions, there is no packet loss or
statistically noticeable latency and throughput overhead, indicating a smooth redirection of the UE
traffic when moving to the new instance of the VNE.

Figure 5.12b shows the HTT'P/2 traffic of 10 UEs connected to the moving VNFina [re-instantiate
— migrate - re-instantiate — migrate] sequence. Here, the QoS overhead is more observable. The av-
erage packet loss rate increase in a one-second frame window is 7% for the VNF re-instantiations and

33% for VNF migrations. Packet losses affect the latency (i.e., the RIT'), occasionally up to hundreds
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Figure 5.13: QoS overhead of HTTP/3 related traffic redirection.

of milliseconds in a one-second period. Considering the measured data, where a 33% packet loss
rate in one second would correspond to a downtime of around 330 ms, if an SLA with 99.999% of
availability has to be maintained, TopoFuzzer would allow up to 911 MTD migrations or 4293 MTD
re-instantiations per service per year. This is equivalent to 17 migrations or 82 re-instantiations per

week; a relatively good upper limit to proactively neutralize and kick off any infection from the VNF.

With HTT'P/ 3, the traffic redirection of one UE does not show a clear overhead in the latency (see
Figure 5.13a). As with HITP/2, the traffic load of 10 UEs shows a latency overhead of migrations of
s ms in a one-second window, a 100% increase, bringing final RTT values from s ms to 10 ms (see Fig-
ure 5.13b). However, unlike HTTP/2, there is no packet loss during the simultaneous redirection of
the UEs’ traffic, and this scales up to 50 simultaneous UEs. The downtime of 5 ms for HTTP/3 would
theoretically allow to perform up to 60126 migrations per year (and 283’338 re-instantiations) under
299.999% SLA availability requirement. However, this may decrease as packet losses start to occur
once the simultaneous connections migrated are over 6o (and 8 for HITP/2). Hence, to generally
keep the values mentioned in terms of SLA requirements, TopoFuzzer could be further optimized to
progressively migrate connections based on its VNIC capability and the protocol involved (TCP or
UDP) rather than simply redirecting all existing sessions at once. This comes with an additional cost
stemming from running two instances of the service for a longer time, which might be a negligible

cost compared to having an occasional service downtime.
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5.4.2 DISCUSSION AND LIMITATIONS

TopoFuzzer’s usage of the conntrack feature, paired with iptables port forwarding to proxy all of the
VNF’s TCP traffic, comes with an additional overhead that is not present in UDP traffic (i.e., QUIC
and HTT'P/3). TopoFuzzer could be improved in different aspects to reduce this overhead compared
to traditional reverse proxies that target only one port of service, avoiding the initial port forward-
ing of the incoming traffic. The management of background sessions (between the out-sockets
and the VNFs) can also be improved, e.g,, by connecting the new out-socket with the new VNF
instance before closing the old out-socket, and then redirecting the data in the pipe to the new
out-socket. This would reduce the service downtime by taking out from the blocking procedures
the 3-way TCP handshake of the new out-socket with the new VNF instance.

Furthermore, the live migration of traffic encrypted at the network layer or the transport layer,
such as IPSec and HTTPS, poses a trust condition as the TopoFuzzer proxy needs the TLS certifi-
cate of the VNF to authenticate itself with the UEs. In practice, this trust is already well established
with cloud providers, as reverse proxy services are widely proposed by them and require such con-
ditions [178]. With the advent of HIT'P/3, such a trust condition might fall as the encryption in
QUIC is purely handled at the application layer, and cloud operators do not need TLS certificates of
services, as demonstrated in Section 5.4.1 with the HTTPS/3 tests. Alternatively, as TopoFuzzer is
open-source, clients can require their private TopoFuzzer instance to configure it confidentially with

their certificates.

5.5 MTD STRATEGY OPTIMIZATION USING OPTSFC

This section evaluates the OptSFC solution, specifically examining its ability to enhance MTD strate-
gies through the application of different deep-RL algorithms.

5.5.1 DiGITAL TWIN OF THE §G TESTBED FOR OPTSFC AND MTDFED ML TRAINING

The convergence of a deep-RL model typically requires a substantial number of timesteps, in the or-
der of millions per training [75]. On the real-time MOMDP model derived from the 5G testbed,
proactive security operations are executed every 40 seconds (a parameter that can be adjusted for
longer or shorter intervals). Training a single deep-RL on the MOMDP is done in one million time-
steps, excluding the additional timesteps required for evaluation. This translates to roughly (40s X
10°)/(3600s X 24) & 463 days of continuous training, just over 15 months. When considering the

scope of this study, which involves training over 20 models between OptSFC and MTDPFed, along
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with hundreds of evaluations (each model training includes at least 10 evaluations), the computa-
tional demands become prohibitive. Each evaluation alone consists of 33’000 timesteps, equivalent
to 15 days of simulated time in the testbed. Consequently, the total time required for training and
evaluation quickly escalates to the order of hundreds of years.

This scalability challenge is a well-known limitation of deep-RL, particularly in domains requiring
to learn “physical” operations, such as robotics. A common approach to mitigate this issue is to train
the RL model in a simulated environment and subsequently transfer or test the learned model in the
real world. To address this, we developed a simulated environment based on statistical measurements
obtained from the real §G testbed. These measurements include network metrics for UEs’ traffic,
the incremental impact of additional UEs, the QoS overhead of MTD actions, their enforcement
times, and risk assessment data for deployed VNFs. The digital twin generates metric values using
a Gaussian distribution, parameterized by the mean and standard deviation of the measurements
recorded in the 5G testbed, bounded by their respective minimum and maximum values.

Furthermore, deploying an untrained model in the 5G testbed would result in random, potentially
costly decisions during the initial phase of training. To avoid this, we first train the model in the
simulated environment to achieve a sub-optimal but reasonable performance level. The model then
undergoes online training in the real testbed to adapt to the dynamic changes in network topology

and composition over time.

5.5.2 EXPERIMENTS AND RESULTS

A comparative study is done by training the deep-RL algorithms for one million timesteps each and
comparing their model’s performance with a random MTD policy (baseline1) and a static MTD pol-
icy (baseline2). Baseline1 is a simple policy that randomly selects an MTD action from the possible
ones, i.e., actions that target an existing VNF, as the MOMDP is a static model and is oversized to the
maximum number of possible simultaneous VNFs, multiple times bigger than the actual number of
VNFs running in the §G testbed. In contrast, Baselinez selects actions for the running VNFs based on
the security priority level attributed to each of them. Next, it decides on the MTD action (i.e., migra-
tion or re-instantiation) based on the availability values in SLA defined in the previous measurements
(Section 5.2.2). Baselinez also runs one MTD action at a time, while the general MOMDP model al-
lows non-conflicting MTD actions moving different VNFs simultaneously.

The performance of the models is also compared with a Stackelberg Markov Game solver from
the MTD framework by Sengupta et al. using the Strong Stackelberg Equilibrium (SSE) [114]. The
SSE solver has to calculate the full Q-value matrix and the reward values for all (state, action) pairs,

imposing more rigorous constraints on the size limits of the MDP, in contrast to its utilization with
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Figure 5.14: Cumulative reward and reward/step.

a deep-RL agent. To mitigate this problem in our experimental setup, we simplified the MDP model

for the SSE solver and discretized continuous metrics to values such as ‘low’, ‘average), or ‘high’ to

avoid a state-space explosion due to high-range values.

The performance of the deep-RL agents tested in OptSFC is depicted in Figure 5.14a. The y-axis

represents the average reward R obtained in a simulated episode, while the x-axis is the number of

episodes n used for the training phase.

The results from the benchmark clearly show a better optimization of the MOMDP return on re-
wards when using the multi-objective RL algorithms compared to single-objective models trained
on the scalarization of the reward vector R. In fact, only the Envelope MORL and EUPG algorithms
learned a slightly better policy than baseline2. SSE and A2C appear to get stuck in a local minimum,
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avoiding performing any MTD action to circumvent the penalties of selecting an invalid action, such
as a non-existing VNF or a VNF that is already undergoing a prior MTD action. The DQN policy
learned that selecting the same MTD action is better than doing nothing, as it resets the ASP values of
the given VNF’s threats. However, since other VNFs are left with their threats increasing the ASP of
possible attackers with time, the cumulative reward of the proactive MTD management drops expo-
nentially as visualized in Figure 5.14. Both PPO and Maskable PPO models learned to re-instantiate
the VNFs defined as most critical, leading to an average reward per step of -0.39, greatly improving
over baseline1 and improving the cumulative reward to a linear curve. One of the reasons is that once
the availability constraint of 99.999% is reached, the VNF cannot be moved. Baselinez still performs
better as it considers the SLA availability constraint of 99.999% and follows a more evenly distributed
selection of VNFs, reaching this constraint less frequently. Envelope MORLS policy demonstrates
similar performance, moving critical VNFs more often and also moving all other VNFs evenly and
with lower frequency. Finally, we identify the improvement of the EUPG model over Envelope
MORL by its tendency to select re-instantiations over migrations, as the former has less network
overhead than the latter. The final EUPG model achieves an average reward per step of -0.193, allow-
ing the accumulation of less than 20’000 penalty values through proactive management of 100’000

timesteps.

5.5.3 DISCUSSION AND LIMITATIONS

One limitation of the OptSFC solution is that MOMDP models are defined with a static number of
states, and as networks dynamically change in size and shape, MOMDPs are not inherently adapted
for network modeling. We address this issue in MERLINS by defining a number of MOMDP states
equivalent to the maximal dimensions of the network infrastructure. This consequently leads to the
action space of the MOMDP being dynamic: resources in the MDP that are yet non-existent in the
actual network are considered idle and inaccessible states and actions for the deep-RL agent. This
solution shifts the problem to the action space, which becomes dynamic, while in MOMDDPs it should
also be static.

The action space shift is realized both by the maskable actions mechanisms of the MaskablePPO
algorithm as well as with penalties provided if the action is invalid, in an effort for the models to learn
which actions are valid at a specific state. However, MaskablePPO did not yield a significant im-
provement over the conventional PPO algorithm, while fixing the MOMDP to an oversized network
had affected the learning curve for smaller networks. For this reason, we limited the tests of OptSFC
to a specific testbed size. While the used 5G testbed can approximate the scale of a private industrial
5G/BsG network, public operators handling a huge number of VNFs face a more complex challenge.
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This complexity exacerbates the MORL learning process in the context of real-world public sG/BsG
networks. A prospective remedy to this limitation involves the learning of a solution set consisting of
multiple models learned on different network sizes, rather than training a generalized one-for-all sizes
policy.

Finally, OptSFC’s deep-RL model can be improved by transferring the learning phases from the
digital-twin environment to the real 5G testbed once the model’s performance is deemed sufficient
for its deployment. This fine-tuning process on what is then defined as a pre-trained model allows
us to have better adaptability to the real dynamics of the network. The models’ training should also
be a continuous process, i.e, performed all along the deployment of MERLINS, as the network can
change its dynamics, deploying VNFs and services with different requirements and different SLA

constraints that affect the deep-RL model performances.

5.6 MULTI-TENANT FEDERATED MTD STRATEGIES USING MTDFED

This section presents an evaluation of MTDFed, focusing on two key aspects. Firstly, it analyzes how
refinements to the MOMDP model, such as feature reduction and reward function optimization,
contribute to the enhancement of MTD strategies. Secondly, it investigates the overhead associated
with the FL-based training process compared to a single, centralized deep-RL training approach. This
analysis specifically examines the impact of FL on both convergence time and the performance of the

trained models.

5.6.1 EXPERIMENTS AND RESULTS

MTDFed evaluation employs a comparative analysis against baseline1 and baselinez, following a simi-
lar methodology to OptSFC’s evaluation. However, the SSE and DQN models are excluded from this
study due to their subpar performance and inadaptability of their implementation with the MOMDP’s
nature (not a figure and a much bigger exploration surface than what SSE could cover). As a result,
the evaluation focuses on four models: A2C, PPO, MaskablePPO EUPG, and Envelope MORL.
Each model undergoes training for one million timesteps. The training is conducted across three
variations of the MOMDP model: continuous task, episodic, and daily. These models are then evalu-
ated over 33’000 timesteps, equivalent to one month of deployment, with each timestep representing
a 4o0-second interval. Similar to OptSFC, as these training times would be prohibitive in the actual
5G testbed, a digital twin is used to simulate the 5G testbed setup, running the same four VNFs. The

digital twin is further extended with the simulation of three stateful CNFs using the measurements
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taken with ContMTD, one from the nginx load balancer, and two from the statistical aggregation of

over 6’000 LiMis recorded in ContMTD’s dataset.
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Figure 5.15: A2C reward measurements during training for the three MOMDP variants.

SINGLE-OBJECTIVE MODELS

In the single-objective deep-RL experiments, agents learned to extend episode lengths, as shown in
Figure 5.15¢, effectively preventing rapid budget depletion and prolonged inactivity. This strategy di-

rectly impacts security performance. Specifically, daily budget allocation consistently outperformed
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monthly and weekly allocations. This is evident in Figures s5.15a and 5.15b for the A2C algorithm,
and similar trends were observed across PPO, MaskablePPO, and multi-objective models. The im-
proved performance with daily budgets stems from the agents’ ability to distribute MTD actions
more evenly, mitigating the risk of overconsumption and subsequent inactivity. Prolonged inactivity
periods, during which the ASP increases, resulting in higher accumulated penalties on the security

objective.

Furthermore, Figure 5.16 demonstrates that the PPO algorithm exhibited a faster learning rate
and converged to a more optimal solution compared to A2C and MaskablePPO. This is corroborated
by the cumulative scalar reward achieved by each algorithm. PPO displayed a less steep negative
slope, indicating a more stable and effective learning process. At 1 million timesteps, PPO achieved a
cumulative reward of -1 million, while MaskablePPO and A2C reached -28 million and -44 million,
respectively. The following subsection further discusses the strategies learned, comparing the results
to those of the MORL algorithms.
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Table 5.7: Models' average reward and action distribution in the test environment

Type Mean reward ‘ Strategy

Baseline1 -16.37 Randomly select among available actions. If no action is
available, do nothing.

Baseline2 -25.59 Select an available action when no action is in progress.
The selection is 50% doing nothing, and 50% selecting
an action based on VNFs’ criticality values defined in the

MOMDP.

A2C 1M -42.65 Always same action: reinstantiation of VNF3.

Maskable PPO 1M | -39.12 Almost always the same action: reinstantiation of VNF3
and a few times migrations of VNF3.

PPO 1M -33.15 Always do nothing.

EUPG 1M -14.7§ Do nothing: 82%; VNF LiMi: 3.2%, VNF reinst.: 12.8%
(per VNF); CNF LiMi: 2.1%.

ENVELOPE 1M -20.36 Do nothing: s0%; VNF1’s LiMi and reinst: 0%; VNFs 2 to

4: LiMi 49.62%, VNF reinst.: 0.17%; CNFs LiMi: 0.3%.

MULTI-OBJECTIVE MODELS AND COLLECTIVE RESULTS

The evaluation revealed that models utilizing the daily MOMDP consistently outperformed those
using the episodic MOMDP, mirroring the trends observed with mono-objective agents. This advan-
tage stems from the same principles of promoting a more consistent MTD action distribution and
avoiding prolonged inactivity. Table 5.7 summarizes the results for the daily MOMDP variant, which
demonstrated the best overall performance. Specifically, the A2C model converged to a strategy of re-
peatedly reinstantiating a single VNF, selecting the most vulnerable as identified by OptSFC’s RI.AS.
module (based on the vulnerabilities found with the OpenVAS scanner). This strategy, however,
proved largely ineffective, yielding results worse than the near-inaction strategy adopted by the PPO
model at 300,000 timesteps. It is worth noting that inaction performs better because selecting a non-
enforceable MTD action results in a negative reward. This is designed in the MOMDP as an attempt
to teach the agent which MTD actions are feasible.

PPO and MaskablePPO models exhibited a comparable strategy to focus on the most or second-
most vulnerable VNF, resulting in a slightly better (but sub-optimal) performance. In contrast, MORL
algorithms generated more diverse strategies. Notably, the EUPG model surpassed both the ’static’
and random valid’ baselines, similar to the findings of OptSFC. Table 5.7 details the Envelope model’s
strategy, which involved 50% inactivity and 0% equal migration of three VNFs, with minimal CNF
migration (approximately 1%). The EUPG agent, however, demonstrated a broader range of MTD
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actions, migrating and reinstantiating all VNFs and containers. It prioritized stateless VNFs due to
their lower resource overhead and enhanced security benefits against malware and backdoors. The
EUPG model’s action distribution was as follows: VNF reinstantiation at 0.8% each (3.2% total),
VNF migration at 3.2% each (12.8% total), CNF LiMi at 0.7% each (2.1% total), and inactivity at

82% of timesteps.”

MTDFED PERFORMANCE

This section evaluates the performance of FL-based models trained across three VNOs, each operat-
ing within its own environment based on an instance of the testbed simulation. To ensure a fair and
direct comparison between the FL-based models and single-objective models, all three VNO envi-
ronments were configured to run the same set of VNFs and CNFs. The evaluation focuses on the

following key metrics:

« Training overhead: how fast or slow is the training in the FL setup compared to a single VNO

training the model on its own?

« Model performance: for the same effort provided by one VNO, how much better can the mod-
els get in the FL setup?

« Secure aggregation overhead: how much longer does the aggregation take when using the

SMC-based secure aggregation?

To compare the convergence results, we firstidentified the convergence time of the mono-objective
agents. Initial convergence measurements were performed by evaluating the models during training
at intervals of 100’000 timesteps. These results revealed that most models reached their optimal per-
formance within the first 100’000 timesteps, with the exception of the Envelope model. Thus, to
obtain more granular insights, we train the models and evaluate them at shorter intervals of 5’000
timesteps, up to a total training duration of 100’000 timesteps per model. Additionally, model eval-
uations were conducted for §’ooo timesteps each instead of 65’000 in order to accelerate the overall
experiment, since every model would be evaluated twenty times (i.e. the number of cycles within the
training period).

As illustrated in Figure 5.17, the convergence of PPO and MaskablePPO occurs at 30,000 and
20,000 timesteps, respectively. In contrast, the FL versions of these models converge within the first

cycle of 5,000 timesteps, although MaskablePPO saw a temporary deviation from the convergence
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Figure 5.17: Cumulative scalar reward of different models within 100’000 timesteps of training.

at 30’000 timesteps, returning to the optimal value soon after. This represents a significant improve-
ment in convergence time, with reductions of at least 83% and 75% for PPO and MaskablePPO, re-
spectively (i.e., a sixfold and fourfold decrease in time). These results demonstrate that the FL-based
models achieve superior performance compared to simply parallelizing the deep-RL training across
three processes. The EUPG and A2C algorithms were omitted from the results due to their lack of
convergence. Notably, EUPG exhibited the best performance from the beginning of training, with
no observable convergence. This behavior can be attributed to the design of the EUPG algorithm,
which includes an evaluation of the model every 1,000 timesteps for policy gradient estimation out-
side of the training steps. The assumption is that the policy selected during the first evaluation remains
unchanged throughout the training, suggesting that it may represent a local optimum or the global

optimum solution.

For all the models, after the convergence, the final performance of the models remains the same,
except for the Envelope model, which sees an improvement of 20% after 100’000 timesteps, from a
final average reward per step of -16.69 in the FL version to -16.69 in the FL version. The non-FL
Envelope model actually struggles to converge within the tested timesteps and previous trainings to

1M timesteps showed a convergence after 300’000 timesteps.
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FL SECURE AGGREGATION OVERHEAD

To quantify the overhead of the SMC-based secure aggregation, a set of FL aggregations is conducted
between the three VNOs for 10 rounds. Aggregation times were measured for each trained deep-
RL model, both with and without secure aggregation. As detailed in Table 5.8, secure aggregation
resulted in an average aggregation time increase of 13 5%, rising from 7.09 seconds to 16.72 seconds.
Notably, the overhead varied across models, with the Envelope model exhibiting the highest increase.
This can be attributed to the Envelope model’s larger neural network architecture, which necessitates
the aggregation of a greater number of weights and biases per round. Consequently, the performance
of secure aggregation is influenced by factors including model size, the number of FL participants, and
the number of intermediate SMC nodes involved in summing perturbed values before global model
aggregation. In this evaluation, we maintained a constant number of three VNOs, reflecting a realistic
scenario where the telecommunication operator would limit the number of VNOs accessing their
infrastructure. Therefore, the impact of varying participant numbers is not relevant here, but previous

research has demonstrated that this is a factor increasing the SMC complexity by O(nlog(n)) [163].

5.6.2 DISCUSSION AND LIMITATIONS

The results presented in this work demonstrate the feasibility of federating deep-RL training, which
not only accelerates convergence but also holds the potential for performance improvements, even
though the likelihood of reaching the same optimal policy remains high. While these findings are
promising, they are preliminary, and further evaluations are necessary to determine if alternative vari-
ants of the MOMDP model could enhance training and enable the discovery of superior policies. The
primary objective achieved by MTDFed is to demonstrate the feasibility of enhancing MTD strate-

gies securely, without compromising sensitive information, through intelligence sharing with poten-

Table 5.8: Aggregation Time and Time Difference

Algorithm Mean aggregation time per round (s) | Increase rate (%)
without SMC ‘ with SMC
PPO 6.96 16.33 134.4
MaskablePPO 7.26 16.03 120.81
A>C 7.25 17.25 137.63
EUPG 6.94 16.29 134.75
Envelope 7.02 17.71 152.23
Overall Mean .09 16.72 135.88
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tial business competitors (in the context of VNOs). However, several challenges and limitations have
been identified, which warrant further investigation.

MTDFed retains OptSFC’s centralized decision-making architecture, where a central core system
orchestrates operations across all VNO domains, including core and edge domains. However, an
alternative decentralized architecture, deploying local models at each edge domain, could be consid-
ered. This approach, especially when combined with online model training during inference, would

necessitate a two-phase model aggregation in the MTDFed framework:
1. Local Aggregation: Each VNO would aggregate its edge models into a single core model.

2. Global Aggregation: The core models from each VNO would then be aggregated into a global

model.

This decentralized structure would considerably reduce the volume of data exchanged between edge
nodes and the core, as OptSFC decisions would be made at the edge level. Consequently, the primary
data exchange between edge and core would be limited to the secure aggregation of the local aggre-
gation phase. Despite this potential advantage, further decentralizing the OptSFC decision system
introduces significant challenges. Informed MTD decisions require a comprehensive network view,
necessitating centralized observation from the core. Moreover, independent edge-level OptSFC sys-
tems within the same network could lead to inefficient or conflicting decisions, complicating imple-
mentation and management. Therefore, to avoid this complexity, the MTDFed solution in this thesis
adopts a federated approach with only one global aggregation.

Finally, while FL with SMC'’s secure aggregation guarantees model confidentiality and mitigates
malicious but passively curious participants, even in a centralized setup, it does not guarantee security
against active malicious participant who performs poisoning attacks such as adversarial samples, label
flipping, or min-max attacks. Thus, MTDFed can be further secured by implementing additional
security methods to increase the robustness of FL models against such malicious participants without

overlooking privacy preservation.

5.7 LESSONS LEARNED FROM THE EVALUATIONS

The development and evaluation of the solutions presented in this thesis —MOTDEC, ContMTD,
TopoFuzzer, OptSFC, and MTDFed— have provided valuable insights into the challenges and op-
portunities in securing modern Telco Cloud 5G/B5G network infrastructures. Below, we summarize

the key lessons learned from each solution:
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Lesson 1. SDN-based soft MTD actions enhance security but introduce network overhead.
MOTDEC demonstrates that MTD strategies, particularly soft MTD actions like IPv6 address and
port shuffling, can effectively mitigate threats in edge computing by dynamically altering the attack
surface. These techniques significantly increase the difficulty for attackers to identify and target ser-
vices, as shuffling limits the time window in which attackers can locate and exploit vulnerabilities.
However, this security enhancement comes at a cost: the computational overhead introduced by L4
header modifications (e.g., port shuffling) can degrade network performance, especially in heavily
loaded environments. For instance, the evaluation revealed that port shuffling has a negative im-
pact on the quality of the DASH video stream and increases latency under high network loads. To
address this, future work could explore alternative implementations, such as TopoFuzzer’s 2-socket
proxy method as opposed to using SDN, to avoid the mangling of all passing packets, reducing the

performance impact of soft MTD actions.

Lesson 2. Hard MTD actions are effective for stateless services but require broader adop-
tion. Hard MTD actions, such as stateless VNF re-instantiation and migration, are highly effective in
neutralizing malware infections and backdoors in stateless VNFs. The MOTDEC evaluation demon-
strated this by successfully mitigating a tampering attack in the 5G testbed, with only minimal service
downtime measured during the process. These actions are particularly valuable in scenarios where
detection technologies are ineffective or absent, as they are triggered proactively and disrupt unde-
tected threats. While ContMTD focuses on enabling stateful LiMi for containers, there is a pressing
need to democratize stateless LiMi as a proactive MTD strategy in cloud-native environments as well.
Stateless microservices, which are designed for replication and distribution across multiple servers
and clusters, are inherently suited for such MTD actions. Integrating proactive re-instantiation and
migration as standard features in platforms like Kubernetes and Docker could significantly enhance

cybersecurity defenses in modern cloud environments.

Lesson 3. ML and heuristic models optimize stateful LiMi strategies in cloud-native envi-
ronments. ContMTD’s use of ML models to optimize LiMi strategies for containers and microser-
vices significantly reduces downtime compared to state-of-the-art methods like CloudHopper. In-
terestingly, the heuristic model often outperforms ML models, highlighting the value of combining
statistical analysis with ML for robust and interpretable solutions, as ContMTD does with the heuris-
tic model for classification and RF for the regression of migration time. ContMTD’s evaluations also
show that LiMi can slow down attacks such as data exfiltration and malware propagation, but the
effectiveness of these strategies depends on the frequency of migrations and the attacker’s ability to

reinfect containers.
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Lesson 4. The protocol choice impacts MTD performance, with HITP/3 outperforming
HTIP/2. TopoFuzzer effectively manages connection handovers during MTD operations, but its
performance varies significantly depending on the protocol used. HTITP/3 (using QUIC) outper-
forms HITP/2 (using TCP) in terms of latency and packet loss, particularly during simultaneous
connection redirections. This is because QUIC, being a UDP-based protocol, does not require con-
nection tracking at the networking layer (i.e., layer 3 in the OSI model), unlike TCP-based HITP/2,
which relies on mechanisms like conntrack and introduces additional overhead. For example, Topo-
Fuzzer’s evaluation showed that HTTP/3 connections experienced minimal latency overhead and no
packet loss during migrations, even with multiple simultaneous connections. This underscores the
importance of protocol selection in MTD strategies, especially in environments with high connec-

tion churn and requirements, such as sG.

Lesson 5. MORL algorithms outperform single-objective models in MTD optimization.
MORL algorithms, such as EUPG and Envelope MORL, outperform single-objective models in opti-
mizing MTD strategies. These algorithms effectively balance competing objectives like security, per-
formance, and availability, leading to more robust and adaptive MTD policies. For example, EUPG
demonstrated superior performance by prioritizing stateless VNFs and minimizing downtime dur-
ing migrations. Despite their advantages, MORL algorithms are relatively underutilized compared
to single-objective models. An important challenge faced in the evaluation of OptSFC and MTDFed
is the dynamism of the network and the lack of deep-RL agents to operate in an environment with
changing action spaces and changing state spaces. Thus, more research is needed on how to general-
ize ML models or how to create a set of models to adapt cognitive decision-making components like

OptSFC to dynamic and diverse environments, such as Telco Cloud networks.

Lesson 6. Data engineering is critical for MTD strategy optimization. In the OptSFC so-
lution, the significance of data engineering during the MTD optimization process cannot be over-
stated. Given the diverse range of objectives under consideration for the optimization of the MTD
strategy, a comprehensive aggregation of real-time data sourced from the network’s monitoring in-
frastructure is necessary. Next, to harness the value of such data, it becomes imperative to establish a
well-designed reward system. This system translates the collected data into quantifiable metrics that
reflect the network’s status toward the objectives outlined within a MOMDP or any other objective
modeling. However, training ML models on monitoring data from public networks carries inherent
risks, such as exposing sensitive end-user information and compromising privacy. Therefore, care-
ful consideration must be given to data anonymization and secure aggregation techniques to protect

sensitive information while enabling effective MTD optimization.
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Lesson 7. FL enables collaborative MTD optimization but requires robustness. MTDFed
enables secure and collaborative optimization of MTD strategies across multiple tenants without
sharing sensitive data. FL-based models converge faster and can achieve better performance com-
pared to single-tenant models, particularly in scenarios with shared infrastructure. The choice be-
tween centralized and decentralized architectures depends on the specific requirements of the net-
work. Future work could explore hybrid approaches that combine the benefits of both architectures,
such as local decision-making at the edge with global coordination at the core. Additionally, novel
techniques to improve the robustness and fairness of FL in multi-tenant environments should be in-

vestigated.
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Summary, Conclusions, and Future Research

Along with the advancements in BsG networks, the next generation of wireless communications,
envisaged as 6G or NextG, will integrate novel technologies and techniques such as Reconfigurable
Intelligent Surfaces (RIS), native Al Internet of Everything (IoE), and ubiquitous cloudification [3].
It will also provide higher flexibility and more granular control of digital infrastructure and services
compared to previous generations. Adopting cloud-native computing comes with considerable ben-
efits as well as a greater risk of security vulnerabilities and impactful threats, already emerging as a
pressing issue with current 5G developments [30].

Additionally, networks are expanding to a more distributed infrastructure using resources across
edge to cloud domains. While this architectural setting is expected to significantly reduce communi-
cation overload, the larger infrastructure that is eventually created also presents new challenges as it
increases the network’s attack surface. Consequently, managing and securing the services along the
edge-to-cloud continuum becomes increasingly critical.

This PhD thesis addresses these security challenges by proposing a novel cognitive MTD approach,
MERLINS.MERLINS enhances both proactive and reactive security by leveraging advancements in
AI/ML, virtualization in edge-to-cloud environments, and automated service orchestration. It devel-

oped provides: (i) a modular and closed-loop methodology enabling optimized and dynamic con-
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trol of MTD operations following a closed-loop paradigm of observing, orienting, planning, deciding,
acting, and learning tasks, while targetting security gains, reduced operational costs, and contained
QoS/QoE overhead (ii) a framework and an HLA constructed that incorporates all phases of the
methodology into layers and components and (iii) a set of solutions representing a first implemented

instance of the MERLINS approach that covers all the layers designed in the HLA.

6.1 SUMMARY

This thesis initially provides an overview of recent advances in telecommunication networks, includ-
ing standards, architectures, and technologies, highlighting the increased complexity and attack sur-
face these networks face. It then introduces the broader concept of MTD, the application of MTD
in various fields of Computer Science, and subsequently focuses on MTD applied to networking sys-
tems. As LiMi is one of the main focuses of the thesis, given its usage as a new MTD operation in the
Telco Cloud, the thesis discusses the different security properties of LiMi, the state-of-the-art and
existing technologies, as well as the optimization algorithms, the traffic redirection methods, and the
evaluations made in previous works, highlighting the advantage of containers over VMs for a minimal
service downtime during migration. Other lighter MTD operations on networking configurations
and topologies are also explored, highlighting the various advantages and challenges associated with
each action. As MTD operations come with a cost, we tackled the issue of trade-off between oper-
ational cost (i.e. resource overhead) and security gains, adding to the equation the overhead on the
performance of the moving services.

After this overview of the fundamentals and understanding of the overall subject, this PhD thesis
proposed a closed-loop methodology that enables the use of dynamically adaptive, proactive, and
reactive MTD operations on the telecommunication network. The methodology starts on the in-
tegration with a G network by following the ETSI NFV standard interface for monitoring and re-
source management (phase A), followed by the analysis, network state assessment and decision mak-
ing phase (B), which triggers an MTD management and orchestration phase (C), and concludes with
the enforcement of the MTD operation on the secured sG assets (D).

A framework with an HLA is designed to provide the components necessary to fulfill each phase of
the methodology. The framework’s HLA previews three layers with components that communicate
with each other. The first layer is the MOL (management and orchestration layer), connecting MER-
LINS to the 5G network via standard NBI provided by ETSI OSM for monitoring and execution of
MTD actions. The second layer is the DML (decision-making layer), which represents the cognitive
layer of the framework using formal modeling, such as MOMDP, to model the state of a 5G network
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and define multiple objectives to optimize, as well as AI/ML methods to optimize MTD strategies
and decision making. The third layer is the EL (enforcement layer), which implements the MTD
operations the framework can perform, such as IP and port shuffling, VNF/CNF re-instantiation,
stateless LiMis, and stateful LiMis. The EL also strictly operates with the MOL to enforce them on
the secured 5G assets.

Finally, a set of five solutions is designed and implemented, covering the layers of the framework
and showcasing the feasibility and possible protection offered by the MERLINS MTD approach. The
MOTDEC solution proposes a way of connecting to the 5G testbed using the ETSI OSM API for net-
work monitoring. It also implements soft and hard MTD actions applicable to VNFs. The ContMTD
solution optimizes stateful LiMi operations for containers and applies it to MTD scenarios, mainly
focusing on interdependent container applications entailing parallel LiMi of multiple containers. The
TopoFuzzer solution provides the live handover of open connections built on TCP and QUIC ses-
sions necessary to enable LiMi and open a set of new possible MTD action operations. The OptSFC
solution optimizes MTD strategies and decision-making for proactive security using deep-RL and
MORL, defining a multi-objective optimization problem balancing security gains, QoS, and opera-
tional costs. The last solution, MTDFed, builds on top of OptSFC, further improving the cognitive
solution and enabling a securely federated optimization process of the MTD strategy by applying FL
and secure aggregation on deep-RL and MORL, preserving the confidentiality of VNOs’ data during
local model aggregation.

The PhD thesis presents different evaluations performed on the five solutions to measure their
security effects and overhead over resources and service performance. Measurable results from the
evaluations comprise 1) IP and port shuffling soft MTD actions performance overhead and security
gains; 2) the effectiveness of stateless LiMi against malware infections and backdoors when using
MOTDEC, and the little overhead presented only by the downtime of TopoFuzzer redirection; 3)
the downtime and the scalability of TopoFuzzer against an increased number of connections and the
benefits of using QUIC instead of TCP; 4) the performance of parallel LiMi of stateful containers
in cloud-native environments; 5) the performance of deep-RL MTD optimization algorithms and
improvements with MORL; and 6) the performance overhead using FL over normal deep-RL and

MORL as well as the overhead of secure aggregation of non-confidential FL.

6.2 REVIEW OF RESEARCH QUESTIONS AND CONTRIBUTIONS

The contributions of this thesis (i.e,, the MERLINS approach and its methodology, framework, and

set of solutions) answer all of the research questions defined in the first chapter of the thesis. This sec-
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tion presents an overview of the RQs and their relation with the contributions of the thesis, depicted

in Figure 6.1.
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Figure 6.1: Overview of research questions and corresponding contributions of this thesis.

RQ1: Which MTD actions can be taken on a §G network and against which attack scenarios,
considering the security properties they offer?

To address this research question, a comprehensive literature study and review were conducted to
analyze MTD techniques in both traditional networks and broader IT environments. Understanding
5G/BsG Telco Cloud environments was also necessary to derive from the MTD literature study,
which MTD operations from existing work can be employed, and what new MTD operations can be
performed or improved.

This thesis provides a study on the fundamentals of 5G/B5G networks and the various standards
and architectures of the environments, such as NFV and MEC. Moreover, MTD operations on tra-
ditional networks and targeted 5G/B5G networks are studied. This led to the design and implemen-
tation of MTD operations for sG assets, including IPv6-based IP and port shuffling, stateless VNF
reinstantiation, and stateless VNF LiMi in MOTDEC; live session handover TopoFuzzer; and state-
ful CNF LiMi in ContMTD.

RQ2: How can we minimize the network and resource overhead associated with MTD op-
erations to ensure system performance and scalability?

MTD operations vary in their resource overhead, QoS impact, and security benefits. This research

question focuses on optimizing the timing and selection of MTD operations to maximize security
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gains while minimizing resource and QoS overhead. Emerging AI/ML methods were explored to
design a decision-making system for optimizing MTD strategies. Additionally, improving the effi-

ciency of specific MTD operations was considered a complementary approach.

This thesis addresses RQz2 through two key contributions: 1) the use of deep-RL and MORL in
the OptSFC solution to optimize MTD strategies; and 2) the enhancement of stateful container LiMi
efficiency using a heuristic model for selecting optimal LiMi methods and an ML-based migration

time regressor to improve scheduling of parallel LiMis.

RQ3: Which formal modeling approaches are most suitable for representing communica-

tion networks to enable near real-time monitoring and security assessments for MTD systems?

This research question arises as a natural extension of RQz2, as optimizing MTD strategies requires
a formal representation of the network state to mathematically define and quantify optimization ob-

jectives, such as security gains, operational costs, and QoS.

To address this, the thesis employs a MOMDP framework. The MOMDP quantifies rewards
for the three optimization objectives and represents virtualized services and resources (e.g., VDUs,
VNFs, CNFs, NSs, NSis, and VIMs) along with their monitored metrics. This framework also enables
the optimization answering RQ2, executed using deep-RL and MORL.

RQ4: What are the ways to distribute the control system of the cognitive MTD solutionin a
multi-tenant peer-to-peer environment? Multi-tenant Telco Cloud environments enable the co-
existence of VNOs, each managing distinct clients, traffic flows, and services. This setup requires
each VNO to deploy its own cognitive MTD solution. However, the deep-RL training process for
the OptSFC solution depends on access to both traffic patterns and network monitoring data to op-
timize the MTD model. Consequently, this RQ investigates a collaborative system where multiple
VNOs can enhance their MTD decision-making capabilities while rigorously preserving the confi-

dentiality of each VNO’s proprietary data.

This thesis proposes an FL approach with SMC-based aggregation to enable collaborative deep-RL
training across VNOs. MTDFed reduces the convergence time for training optimal MTD strategies
while preserving the confidentiality of each VNO, compared to training each VNO in isolation on its

own data.

Beyond addressing the core research questions, this thesis makes several additional contributions:
(a) the definition of a closed-loop orchestration methodology enabling the automation of proactive
and reactive MTD enforcement, and (b) the HLA design, providing an extendable and composable
framework that can increase its portfolio of MTD actions, all while using a standard-aware interface

to interact with NFV §G/Bs5G cloud-native networks.
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6.3 OUTLOOK OF FUTURE RESEARCH

While an MTD framework provides an additional layer of security to future cloud and telecommu-
nication networks, it can also be a new point of attack. The ML model, for instance, is a sensitive
attack surface that can be vulnerable to hijacking and poisoning, triggering useless MTD operations
to waste resources or as a DoS attack [3]. Measures can be implemented to safeguard data integrity
and authenticate the origin of data, particularly from network endpoints providing monitoring data.
To mitigate these risks, measures such as data integrity verification and endpoint authentication must
be implemented to ensure the reliability of monitoring data. Additionally, introducing noise to ML
predictions can serve as a countermeasure against model inversion attacks [3].

As discussed in the evaluation of the MTDFed solution, the secure aggregation method in FL en-
sures model confidentiality but remains vulnerable to adversarial poisoning attacks from malicious
participants, such as adversarial sample injection, label flipping, and min-max attacks. To address
these vulnerabilities, MTDFed can be further strengthened by integrating additional security mea-
sures that enhance the robustness of FL models against malicious actors while preserving privacy.
A promising approach is the incorporation of MTD strategies into the FL process itself, such as dy-
namically selecting different aggregation algorithms or shuffling SMC aggregation nodes, all while
maintaining the confidentiality guaranteed by SMC [179].

Moreover, for technical, economic, and legal reasons, the decisions of the deep-RL agents should
also be humanly explainable (i.e., with statistics and logic). For instance, ENISA[32] emphasizes
the explainability of AT and ML algorithms, especially DNNs, which are not explainable by nature.
Integration of explainable Al into MTD remains an open research question. It is potentially possible
to implement different explainable RL (XRL) methods present in the literature, such as the XRL via
reward decomposition [180]. With this method, rewards can be classified according to semantically
meaningful reward types, which fits well with the multi-objective nature of the MTD optimization
problem.

Finally, another path for future research is the exploration of energy-efficient MTD strategies as
another optimization objective. This constitutes a relevant research direction in light of environmen-
tal considerations related to sustainable energy consumption and the overarching goal of achieving
a global net-zero footprint and the UN Sustainable Development Goals (SDGs) [31]. In this con-
text, the integration of MTD techniques can consider the carbon emissions associated with network
slices” activities, and the energy cost for MTD actions can be integrated into the optimization model:
e.g, by strategically placing VNFs within cloud nodes powered by green energy sources rather than

fossil-fuel-powered nodes.
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Publications

This PhD thesis resulted in several scientific works published in selected venues. These works were
all directly or indirectly related to the topic of this thesis. Further, master’s and bachelor’s theses were
supervised and developed in the cybersecurity and network management context, whose individual
outcomes in terms of proposed solutions and evaluations contributed toward the overall MERLINS
approach and results.

A.1  CONTRIBUTION OF OWN PUBLICATIONS WITHIN CHAPTERS

The PhD thesis objectives outlined at the macro level are typically decomposed into several specific
goals achieved by publications across the thesis period. Thus, it is relevant to highlight where those
publications appear as core or additional elements in each chapter of this PhD thesis. Also, several
students’ thesis (i.e., Master Thesis (MSc), Master Project (MAP), Bachelor Thesis (BSc), and Bach-
elor Project (BAP)) contributed to this PhD thesis by implementing solutions motivated, designed,
and supervised by the author of this PhD thesis. Table A.1 lists own contributions in the PhD thesis’
chapters.

A.2  LiST OF PUBLICATIONS

This section lists publications made by the author during the PhD thesis period. In addition to the
previously cited publications that contributed directly to the thesis, the author’s research and collabo-
ration within the Communication Systems Group (CSG) resulted in several publications from 2021
to 2025. All of these publications are related to computer networks and cybersecurity.
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Table A.1: List of Publications per Chapter

Chapter Related Publications Student Thesis
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1. Introduction [30] [136] - - R B R R
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Glossary

Artificial Intelligence A machine-based system that can, for a given set of human-defined objec-
tives, make predictions, recommendations, or decisions influencing real or virtual environ-
ments.

Attack graph A graphical representation of potential attack paths and vulnerabilities in a system,
used to analyze and mitigate security risks.

Beyond 5G (BsG) This indicates the telecommunication network technology following that of s G
networks. With the current global initiatives, BsG networks are also denoted as 6G or NextG
networks.

Cloudification The process of migrating traditional IT infrastructure, applications, and services to
cloud-based platforms to improve scalability, flexibility, and cost-efficiency.

Cognitive security A security approach that uses artificial intelligence and machine learning to de-
tect, analyze, and respond to threats in real-time.

Communication Service Provider An organization that offers communication services such asvoice,
data, and video to customers, including telecom operators and internet service providers.

Decentralization The distribution of control, authority, or functions away from a central location
or organization to multiple distributed entities.

End-to-end communication A complete communication path from the source to the destination,
ensuring data is transmitted and received without interruption.

Formal model A mathematical orlogical representation of a system or process, used to analyze and
verify its behavior and properties.

Framework A structured set of guidelines, tools, and best practices designed to help develop and
manage systems or projects effectively.

High Level Architecture A conceptual framework or design that outlines the overall structure and
components of a system without detailing its implementation.

Information Security The protection of information and communication systems from unautho-
rized access, use, disclosure, disruption, modification, or destruction in order to provide con-
fidentiality, integrity, and availability.
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Infrastructure Communication Provider A telecommunication company that offers physical in-
frastructure, such as RANSs, edges, and core networks and servers as a service.

Live Migration The process of moving a running application from one physical host to another
without service interruption.

Machine Learning A branch of Artificial Intelligence (AI) that focuses on the development of sys-
tems capable of learning from data to perform a task without being explicitly programmed
to perform that task. Learning refers to the process of optimizing model parameters through
computational techniques such that the model’s behaviour is optimized for the training task.

Methodology A systematic approach or set of procedures used to achieve specific goals in a system-
atic way.

Moving Target Defense The concept of controlling change across multiple system dimensions in
order to increase uncertainty and apparent complexity for attackers, reduce their window of
opportunity, and increase the costs of their probing and attack efforts.

Near real-time A system or process that operates with minimal delay, providing results or responses
almost immediately after input or events.

Proactive security A security approach thatfocuses on preventing threats and vulnerabilities before
they occur through planning and preventive measures.

Risk assessment The process of identifying, analyzing, and evaluating potential risks to determine
their impact and likelihood.

Solution A software or framework implementing the method designed to solve a specific problem
or address a particular need.

Telco Cloud A cloud computing environment specifically designed for telecommunications provi-
ders to deliver network functions and services virtually.

Virtual network operator A company that provides network services to customers without owning
the underlying network infrastructure, often leasing it from other providers.
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