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Abstract—As commercial 5G roll-outs continue progressing,
research efforts are shifting toward requirements, challenges, and
critical enablers for prospective 6G networks. The introduction of
Artificial Intelligence (AI) support in 5G will be further exploited,
rendering AI a key enabler for providing automated network
management and orchestration, while improving the network
resilience against potential threat actors. Therefore, it is crucial
to investigate smart security schemes in “Beyond 5G” networks.
This paper presents a use case for the proactive and reactive
defense of end-to-end network slices that relies on AI-based attack
detection to apply Moving Target Defense (MTD) policies based
on an innovative framework.

I. INTRODUCTION

The advent of 5G commercial rollouts launched discus-
sions on potential 6G use cases, requirements, challenges,
and critical enablers [1]. In this context, AI is considered a
potential 6G enabling technology for the design and optimiza-
tion of intelligent networks with self-organizing capabilities
[2]. 5G and beyond networks include extensive capabilities,
such as multi-tenant service paradigms, multi-tier architec-
tures, and software-defined infrastructures, introducing several
challenges regarding network security, as each one leads to
potential vulnerabilities. Thus, this paper presents a security
use case that leverages AI to provide end-to-end network slice
protection. Security mechanisms include the Moving Target
Defense (MTD) and Anomaly Detection paradigms that ingest
diverse data from multiple points across a cellular network.
Their analysis can provide per-slice proactive and reactive
defense policies from potential threat actors.

II. USE CASE DESCRIPTION

The objective of this paper’s use case is the demonstration
of MTD as an effective mechanism in improving the network’s
resilience against attacks, providing the means for validation
of the MTD’s framework AI-inferred security enhancements.
The demonstration of the use case will take place on actual
5G infrastructure and its operation will be validated by related
Key Performance Indicators (KPI), while the network is under
emulated attacks.

A. Overview

The security use case describes the operation of the pro-
posed MTD framework that exploits AI and network softwari-

NFV Management and orchestration

Slice Manager NFV MANO

Slice 1
Slice 2

Slice N

Virtualization Layer
NFVI 1VNF 1

NS 1 VNF 2

NFVI NVNF N-1
VNF N

Infrastructure Layer

MOTDEC

architectural
link

abstract
link

receiving
data

enforcing
commands

OptSFCOptimal
policy

decisions

Security
agents

Monitoring
Framework

Anomaly
Detection

Cost and
threat
models

MTD

TopoFuzzer1

TopoFuzzerN

Fig. 1: Network Slices’ Security Framework

sation in order to assess an autonomous security system (cf.
Fig. 1) for protecting Network Slices (NSi), Network Services
(NS), and Virtual Network Functions (VNF) as instantiated
in part of the Athens 5GENESIS Facility [3]. The Katana
Slice Manager [4] is responsible for configuring, orchestrat-
ing and monitoring all sub-components of NSis. The MTD
Framework is responsible for the MTD mechanism, assisted by
the Anomaly Detection Framework, the Security Agents and
Monitoring Framework, which are further described below.

The MTD framework deploys two components: (i) the
MTD controller MOTDEC, responsible for enforcing MTD
actions, and (ii) OptSFC, a Machine Learning (ML) op-
timizer of security functions, providing MTD strategies to
maximize attack prevention and mitigation and to minimize
computational costs according to requirements of Security
Service Level Agreements (SSLAs) [5]. For this purpose,
OptSFC models the state of the network using an incomplete
information Markov game, since the defender does not know
directly what the attacker is doing, but can perceive it through
network changes and alerts. To this end, OptSFC will be fed
with real-time monitoring data provided from (a) infrastructure
monitoring and Management elements, (a) Anomaly Detection
initiated alerts, and (c) Security Agents’ monitoring feed.
The Markov Decision Process (MDP) trains a Reinforcement
Learning agent, integrated into OptSFC, to provide an MTD
policy to MOTDEC.

The overall solution will be evaluated as a proactive
and reactive defense mechanism through a set of KPIs. An
important consideration is the security effectiveness of MTD



and the cost of reconfiguring the network. As a result, the KPIs
include Protection Gain of MTD Policy, MTD Action Cost,
QoS (Quality-of-Service) Loss/Gain of the protected resources
when defense prevails over efficiency and vice-versa, and the
Mean Time to Detect a security incident.

B. Moving Target Defense

MOTDEC will perform MTD shuffle actions on network
interfaces, traffic flow, or on the resources themselves, in order
to annul the network data gathered by the attacker, forcing
him to perform more reconnaissance scans, which leads to
higher probability of attack detection. Such operations can
be performed on both the internal interfaces of the network
and on the external/public ones. In the former case, MOTDEC
prevents an attacker inside the network from easily exploring
and further penetrating it. In the latter case, the resource is
meant to be always accessible by external devices with a
public interface, and it provides a different public IP address
to suspicious end-users or User Equipments (UE), allowing
further targeted analysis of their generated traffic. MOTDEC
will decide on the appropriate policies to be applied, by com-
municating with the proper management and control elements.

So as a universal and scalable method, MOTDEC inte-
grates an SDN controller (i.e., ONOS) and creates a middle
virtual network, called Topology Fuzzer, used to change the
node links and network data flow, increasing the difficulty
of identifying the network topology. Similarly to the work
presented by Islam et. Al [6], we assign dynamic ephemeral
IP addresses to the virtual nodes, and redirect the packets to
the protected resources with a softwarized address translation
(NAT). MOTDEC will also perform MTD diversity actions,
making it possible to move a protected resource from an NFVI
cloud infrastructure to a different one, e.g., from an OpenStack
VIM to an Azure VIM. This changes the environment of
the running resource and reduces the threats due to specific
system’s vulnerabilities.

C. Anomaly Detection

The Anomaly Detection Framework is responsible for
tracking suspicious activities and alerting the OptSFC. The
Framework forms an end-to-end ML pipeline, comprising
three distinct modules: the Data Ingestion, the ML, and the
Analytics modules. The Data Ingestion module collects and
pre-processes data from various underlying networks (i.e.,
the Radio Access, Core, Transport, and Cloud). The pre-
processing function includes data translation to appropriate
formats and storage to central databases. In turn, the ML
module retrieves the prepared data and proceeds with training
and inference in an unsupervised manner in order to remove
the additional cost of labeling the available datasets, suitable
for production environments. Anomaly Detection has been
extensively studied in the literature, so the underlying algo-
rithms will follow recent graph-based efforts that have shown
promising results compared to traditional ML techniques for
various types of attacks [7]. Finally, the Analytics module
enriches the ML module’s results with additional context,
such as geolocation information, provides a graphical user
interface (GUI) highlighting potential threats, and acts as the
communication endpoint with external entities, e.g., OptSFC.

D. Security Agents and Monitoring Framework

To achieve automated network management and orches-
tration, security functions require precise information on the
status of the network and functions. This is provided by the
INSPIRE-5Gplus MMT Monitoring Framework (MF) being
composed of distributed probes and a centralized function for
the management and analysis. In the context of SDN/NFV and
network slicing, monitoring probes (i.e., Security Agents) need
to be easily deployed and adapted to changing requirements
and topology. These monitoring probes extract data (from
packets, flows, but also system and application logs) needed
to detect anomalies, assess SSLAs, but also to obtain training
data for supervised or semi-supervised ML algorithms. The
data extracted needs to be analyzed by MF that implements
several features including managing the deployment and dy-
namic configuration of distributed probes, analyzing data to
detect anomalies using different techniques (such as rule
and behaviour-based analysis, ML, Change Point Detection),
generating alarms, providing dashboards to provide users with
the information and control needed, and interacting with
orchestrators, controllers, and security functions to automate
remediation actions.

III. CONCLUSIONS

The objective of this security use case is the protection
of network slices in heterogeneous cellular environments.
MTD is considered a promising method for increasing the
network’s resilience against attacks leveraging AI, a potentially
enabling technology in 6G. Anomaly Detection can act as
a complementary source of information providing additional
context to optimize policy decisions.
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